### The Digital Evolution Cycle: Rethinking Auto Product Development with Continuous Fiber Thermoplastic Composites Project ID: mat118

SPE ACCE 2023, September 6-8, 2023



Research and Development Engineer Clemson University

This presentation does not contain any proprietary, confidential, or otherwise restricted information

3/2023

# **Relevance: Project Objectives**

#### 1. Achieve a 42.5% weight reduction, per FOA, or 50%, per USDRIVE Partnership Plan

- Base weight = 31.8 kg
- Target Weight = 18.28 kg

#### 2. Zero compromise on performance targets

- Similar crash performance
- Similar durability and everyday use/misuse performance
- Similar NVH performance
- 3. Maximum cost induced is 5\$ per pound saved
  - Allowable increase = \$ 150.1 per door

#### 4. Scalability

Annual production of 20,000 vehicles

#### 5. Recyclability

- European standards require at least 95 % recyclability
- Project goal is 100% recyclable (self-imposed)



(H) comp<u>sites</u>

## Introduction: Automotive Product Development 🕨 🗰 🥵 📽



Systems level approach has been the mainstay in the automotive industry !



#### Salient Features

COMP<u>SITES</u>

New material deployment is often limited due to experimental constraints which is expensive.

Inability to model/predict these manufacturing defects lead to **over engineering or underpredicting.** 

# Traditional Product Development





BMW i3 and i8 Revolutionary use of composites Commercially unsuccessful



Tragic Crash in composites intensive Virgin Galatic SpaceShip 2

#### **Salient Features**

- New material deployment is often limited due to experimental constraints which is expensive.
- While coupon level tests are conducted "scaled manufacturing" effects are ignored.
- Inability to model/predict these manufacturing defects are major risks for OEMs !!!

## What is Digital Lifecycle ?



#### COMP<u>sites</u>

#### **Salient Features**

- Computational material science broadens material options.
- Coupons are manufactured and characterized in order to obtain manufacturing and mechanical inputs !
- Multiple simulation and validation steps provide OEMs the confidence to adopt new materials

# **Design Approach**





7

### Material Data Generation



#### **Coupon Manufacturing**





**Material Processing** 

 Plaques were manufactured in line with the final processing route selected

Bonding Strain Gauges

• Bi-axial strain gauges were used in order to record true strain.

Sample Screening and Preparation

- Plaques were scanned for voids using a CT scanner.
- 0 and 90 Samples were cut using a diamond coated blade. Tabbed using epoxy-based adhesives.

#### Tension



#### Compression





#### **Material testing**

ASTM D 039

- Samples tested in 0° and 90° orientations
- At least 5 samples were tested
- Crosshead speed of 2.5 mm/min

#### ASTM D6641

- Samples tested in 0° and 90° orientations
- At least 5 samples were tested
- Crosshead speed of 1.3 mm/min

#### ASTM D3410

- Samples tested in 45° orientations
- At least 5 samples were tested
- Crosshead speed of 1.5 mm/min

# Endless Fiber Reinforced Polymer



#### In-Plane Shear (Compression)



- In-plane shear behavior was characterized using the compression tests on a [±45º] laminate.
- Tension mode allowed fiber rotation due to the thermoplastic matrix toughness and axial strain was measured using optical methods with markers and high-resolution video cameras.
- Compression mode was performed using the shear-loaded compression method (IITRI) and strains measured to the limit of strain gages.

(H) COMP<u>sites</u>

### Woven Fiber Reinforced Polymer

100

90

80

70.

60·

50

40

30

20

10

-20 -

-30

-40 -

-50

-60

-70

0.000

Energizing Chemistr

Strain (%)

Stress (ksi)

Stress (ksi)





Strain (%)

#### In-Plane Shear (Compression)

COMP<u>SITES</u>



- Compression mode was performed using the shear-loaded compression method (IITRI) and strains measured to the limit of strain gages.
- Load-displacement response was used to identify plateau stress and displacement limits.

# Modeling Pathway





- Compared to other approaches the present work establishes a complete pathway for end-to-end analysis of thermoformed continuous carbon fiber reinforced Polyamide 6 (PA6) composite structure.
- To the best of the authors knowledge this is the <u>first synergistic experimental and numerical approach</u> that <u>wholly</u> <u>captures process induced effects and its impact on static mechanical performance.</u>

### Thermoforming Setup



First tool to incorporate copper cooling channels for liquid nitrogen in order to quench cool a geometrically complex formed component !

### Experimental Inputs to Digital Lifecycle



| Property                            |        | Carbon/PA6          |  |
|-------------------------------------|--------|---------------------|--|
| Specific Heat                       | @ 25°C | $1206.65 \pm 24.57$ |  |
| [J/kg K]                            | @ 45°C | $1304.96 \pm 21.36$ |  |
| <b>ASTM E 1269</b>                  | @ 60°C | $1364.76 \pm 18.64$ |  |
| <b>Thermal conductivity</b> [W/m K] |        | $0.682 \pm 0.001$   |  |

 Coupon level mechanical and thermal tests were carried out for generating mechanical material card and inputs for MTR pathway.

(H) COMP<u>sites</u>

### Experimental Subcomponent Runs





- Thermocouples on the tool and material provided important inputs for digital lifecycle.
- Good consolidation was achieved in all 3 hat sections and adhesive appliation

# Thermoforming results: Thickness Variation



- Good consolidation was achieved in all 3 hat sections
- Maximum thickness:2.01mm is observed at location 5 with the standard deviation of 0.008mm.
- Minimum thickness of 1.97mm is observed along the flatter edges locations 1 and 3 with the standard deviation of 0.01mm.
- A comparison between the measured thickness and predicted thickness shows a good agreement

# Thermoforming results: Fiber Orientation



| Location | Experimental Average (°) | Std. | Simulation | %Difference |
|----------|--------------------------|------|------------|-------------|
| 1        | 96.76                    | 1.42 | 95.77      | 1.02        |
| 2        | 91.90                    | 3.19 | 90.18      | 1.87        |
| 3        | 90.93                    | 0.81 | 90.00      | 1.03        |
| 4        | 100.08                   | 5.17 | 96.72      | 3.36        |

A comparison between the experimental orientation and the simulated prediction shows good agreement

 Fibers in directions 1 and 2 initially 90° apart

The maximum fiber angle of 103° can be observed from the contour plot near location 4, which means a fiber reorientation of 13°

(H) COMP<u>sites</u>

# Quasi Static Experiments and Modelling



- Process induced effects namely fiber orientations, thickness variations and residual stresses included.
- **Software:** LS-Dyna
- Material model: LS-DYNA material law MAT 58 (MAT\_Laminated\_Composite\_fabric), anisotropic behavior of composite
- **Damage mechanics:** Matzenmiller-Lubliner-Taylor model.

- Crosshead Speed: 1/mm/min
- Support Span: 119.3 mm
- Punch Radius: 10 mm
- Support Radius: 10 mm

(H) COMP<u>sites</u>

## Experimental: Quasi Static Performance



- Linear elastic region of all 3 trials is extremely repeatable.
- Initiation of failure is repeatable.
- Peak load and progressive damage vary slightly.







## Model Validation: Quasi Static Performance







× z x





- A comparison between the experimental orientation and the simulated prediction shows good agreement.
- The damage behavior is consistent with the experimental results.



### Experimental: Dynamic Performance





Constraint

Punch

Hat

Structure

Support



# Model Validation: Dynamic Performance





- •Software: LS-Dyna
- •Material model: LS-DYNA material law MAT 54(Enhance composite damage)
- •Damage mechanics: Chang-Chang failure model



- A comparison between the experimental results and the simulated prediction shows good agreement.
- The damage behavior is consistent with the experimental results.

Thermoforming process effects on structural performance of carbon fiber reinforced thermoplastic composite parts through a manufacturing to response pathway

Journal of Composites Part B Impact factor: 13.1

materialstoday

composites

# Manufacturing Simulations: Inner Panel



Design optimization for reduction of manufacturing defects using draping simulations with support from

Lanxess

# Drapability





Design changes, cavity driver location and deployment guided by manufacturing to response simulations

### Composite Parts



#### Inner Beltline Stiffener



#### **Inner Panel**



# Concluding Remarks





- Digital Lifecycle presents a comprehensive scalable platform to enable the design and manufacturing the world's first thermoplastic composites door !!!
- Systematic experimental evaluation of different material preforms were crucial inputs for the Digital Lifecycle Process.
- > Subcomponent verification served as a crucial milestone for Digital Lifecycle and helped the team take crucial decisions.

### Team and Acknowledgements

- Dr. Srikanth Pilla (PI)
- Dr. Gang Li (Co-Pl)
- Dr. Shridhar Yarlagadda (Co-PI)
- Duane Detwiler (Co-PI)
- Ryan Hahnlen (Co-PI)
- Dr. Paul Venhovens (Faculty)
- Melur (Ram) K. Ramasubramanian (Faculty)

#### **Design Team**

<u>Aditya Yerra</u>, Alireza Zarei, Amit Deshpande, Lukas Fussel

#### Manufacturing Team

- Sai Aditya Pradeep, Amit, Sushil, Ashir, Senthil, Akash
- David, Rick, Gary, Edward and Nick (Staff)

#### FEA Team

- <u>Anmol Kothari</u>, Madhura Limaye,
- Istemi Ozoy, Bazle Haque, Laxmanan

#### **Material Supplier and Draping Analysis:**

Pal Swaminathan

#### Cost Team

Pardhvi Shah, Gaurav Dalal

#### **Tooling Team**

• <u>Bruno Mariani</u>, Mike Tabbert, Dave, Rob, Mike

#### OEM Team

Skye Malcolm

Students Graduated

6 PhD Students 7 Masters Students



The team is thankful for the financial support from the Department of Energy, Project # DE-EE0007293 and Program Managers Felix Wu and David Ollett

# Summary



#### **Baseline Door**

Structural Parts17Structural Mass15.4Total Parts61Total Mass31.7Trim + Glazing3.7Performance5 siCosts (\$/lbs saved)NA

17 Parts 15.44 kg 61 31.1 kg 3.7 kg + 3.49 kg 5 star NA



### Ultralightweight Composites Door

| Structural Parts     | 6 Parts                       |  |
|----------------------|-------------------------------|--|
| Structural Mass      | 8.4 kg                        |  |
| Total Parts          | 52                            |  |
| Total Mass           | 21.1 kg                       |  |
| Trim + Glazing       | 2.59 kg + 1.34 kg             |  |
| Performance          | Meets or exceeds (Simulation) |  |
| Costs (\$/lbs saved) | \$ 5.8 (\$ 5 permitted)       |  |
| -                    | \$ 1.92 ( LCCF Door)          |  |

- Manufacturing completed for Inner Beltline Stiffener and Inner Panel
- FEA showed the composite door exceeding static and crash targets.
- Assembly of Doors are currently underway
- Crash tests performed and targets exceeded
- Cost analysis was updated.

