Lightweight solutions for underbody protection shields of BEVs

> Glass fiber - Polypropylene (PP) organosheets and hybrid sandwich boards

Udo Steinhauer, September 6, 2023

Profol

Around the world

Product groups & Markets

BEV market
Development

Challenges battery protection

Lightweight solutions

Composites material design

Panel design | demonstrators

Impact test design

Panel performance

Around the world Product Groups Markets

Around the world

> One composites plant

Product groups

Cast PP films

since 1980

>Composites

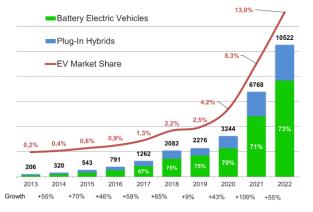
since 2018

BEV market

Development

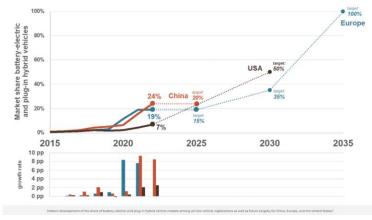
Challenges of battery protection

Development BEV (Battery Electric vehicle)


> Global sales: +55% 2022 to 2021

>+48% North America

>+15% Europe


> Market share: 13% in 2022 20% in 2025 (target)

Source: www.ev-volumes.com

Share BEV+PHEV and future targets

Source: icct https://theicct.org/2022-update-ev-sales-us-eu-ch-aug22/

Development BEV

> Estimate global sales (unit sales): 13 million vehicles in 2025

Most recent update: May 2023

Source: Statista https://www.statista.com/outlook/mmo/electric-vehicles/worldwide#unit-sales

Challenges in battery protection

> Impacts by tow hitch, blocks, alternators, etc.

Three ball tow hitch

Concrete block

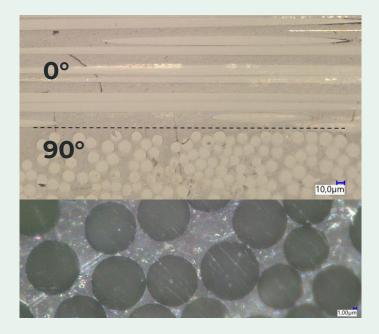
Alternator

> Thermal runaway

Source: NTSP report https://www.repairerdrivennews.com/2021/01/18/ntsb-report-highlights safety-risks-precautions-for-electric-vehicle-towing-storage/

Pictures: Forward Engineering | UL Research Institutes

Lightweight solutions


Composites material design Panel design | demonstrators Impact test design Panel performance

Composite material design

Glass fiber – Polypropylene (PP) unidirectional tapes (UD tapes)

Starting material for lightweight composites

Important parameters

- Fully impregnated glass fiber in polypropylene matrix form uniquely mechanical properties of UD-tape, resulting in high mechanical strength
- Gapless and bubble-free enclosure of individual glass fiber filaments

Lightweight Panel Design | demonstrators

Three different panel design made of glass fiber – PP UD tapes vs a 2,5mm thick aluminum plate (length 500mm x width 360mm)

- > Organosheet: 20 layers of UD tapes in 0° and 90°
- > Sandwich: 2x 5 layers UD tape with PP-GF30 core
- > Sandwich: 2x 5 layers UD tape with PP foam core

Panel	Panel Description	Material	Thickness [mm]	Mass relative to baseline
1.0	Aluminum baseline	EN AW 5754-H22 aluminum	2.5	-
2.1	Monolithic proUD 8*0 2*90	20 proUD	3.9	-7%
3.0	Sandwich-proUD 8*0 2*90 skins + PP_GF30	[5 proUD PP_GF30 5 proUD]	5.12	+3%
3.1	Sandwich-proUD 8*0 2*90 skins + PP_foam	[5 proUD PP_foam 5 proUD]	7.2	-35%

Impact test design

Impact / load by a 90mm diameter hemispherical intender

Drop tower test

Dynamic test: resistance to damage up to 400J

> Bollard test

Quasi-static test: failure mechanism, how damages propagate as panel is loaded to rupture

Drop Tower test (dynamic)

 Aluminum panel suffers plasticity and permanent deformation though yielding at energy levels as low as 50J and increases at higher energy levels

> Less damage to composites panels

- > 2.1 Organosheet 20 layers: no permanent deformation even at 400J; cracking starting at 250J
- > **3.0 Sandwich with PP-GF30 core**: minor deformation starting from 50J; cracking at 325J
- **3.1 Sandwich with PP-foam core**: minor deformation starting at 250J; no cracking even at 400J

Drop Tower test – Panel images after 400 J impact

1.0 Aluminum panel

Fig 3: Alu panel- top side

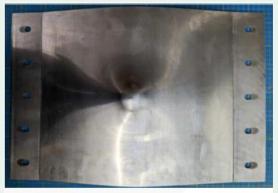


Fig 4: Alu panel- bottom side

Fig 5: Alu panel- in region of indenter

Drop Tower test – Panel images after 400J impact

2.1 Organosheet 20 layers

Fig 6: Monolithic 2.1 panel- top side

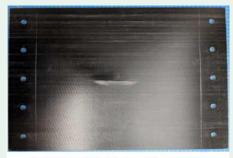


Fig 7: Monolithic 2.1 panel- bottom side

3.0 Sandwich with PP-GF30 core

Fig 8: Sandwich 3.0 panel- top side

Fig 9: Sandwich 3.0 panel- bottom side

3.1 Sandwich with PP-foam core

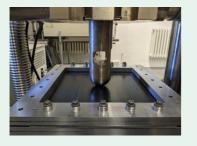


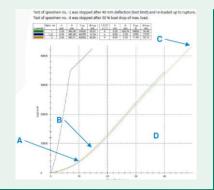
Fig 10: Sandwich 3.1 panel- top side

Fig 11: Sandwich 3.1 panel- bottom side

Bollard test (quasi static)

- All panels achieve peak forces and energy absorptions at rupture fulfilling requirements for medium size EV
- > Organosheet 20 layers: 43% higher energy absorption than aluminum plate
- Sandwich with PP-foam core: **withstand significant deformation without failure** of the skins or core-to-skin interface
 - \rightarrow "ductile" response to impacts
 - \rightarrow lightweight damage tolerant underbody shield

Bollard test – Load vs Deflection curve

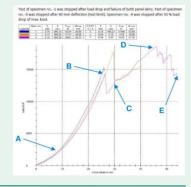

1.0 Aluminum panel

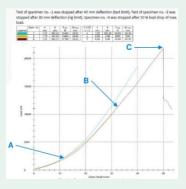
- A. Nonpermanent deformation
- B: Plastic deformation starts and spreads rapidly through panel
- C: Test stopped when panel crack develops
- D: Panel absorbs energy via irreversible plastic deformation

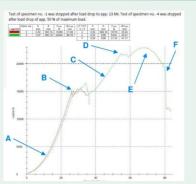
2.1 Organosheet 20 layers

- A: Nonpermanent deformation
- B: Fiber failure on first skin
- C: Change in panel stiffness
- D: Fiber failure on other side of panel
- E: Panel continues to absorb a large amount of energy

F: Final panel rupture




3.0 Sandwich PP-GF30 core


- A: Nonpermanent deformation
- B: Fiber failure on first skin
- C: Core crushing but panel continues to absorb a large amount of energy
- D: Fiber failure on another layer; peak force
- E: Final panel rupture

3.1 Sandwich PP-foam core

- A: Nonpermanent deformation
- B: Panel exhibits a "ductile" response; no fiber failure of the skin or at coreto-skin interface
- C: Fiber failure on panel skin; rupture

Bollard test – Panel images after rupture (top and bottom)

1.0 Aluminum panel

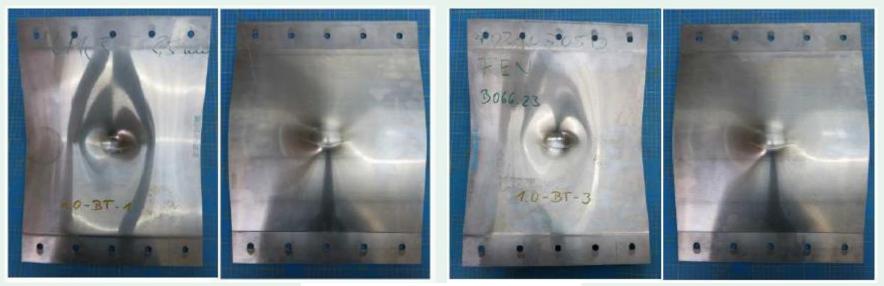
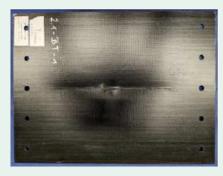
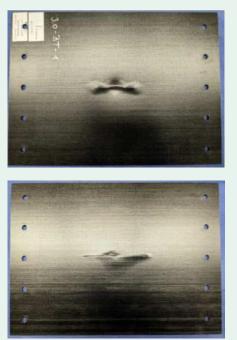
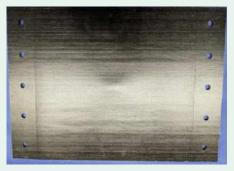



Fig 16: Alu baseline panel- after bollard testing


Bollard test - Panel images after rupture (top and bottom)

2.1 Organosheet 20 layers



3.0 Sandwich with PP-GF30 core

3.1 Sandwich with PP-foam core

Conclusion

Glass fiber - PP lightweight boards made from UD-tapes are the solution to meet all critical requirements of underbody protection shields:

- > High strength-to-weight ratio: **absorbing up to 43% more energy** and being **up to 35% lighter** than high strength aluminum
- Impact resistant: composite shields are much more resistant to damage than aluminum and withstand significantly larger impacts without permanent deformation
- > Composites shields retain significant strength even in the damage state
- > Corrosion resistant (glass fiber + PP)
- > Easy to mold and shape (thermoplastic properties)
- > Cost effective

> [Remark: UL 2596 test pending (Test Method for Thermal and Mechanical Performance of Battery Enclosure Materials)]

THANK YOU!

Udo Steinhauer

Director Business Development & Marketing

usteinhauer@profol.de

https://www.profol.de/en/composites/

