

The Interdependency of Design, Materials, and Manufacturing to Optimize a Composite Battery Solution

Greg Poterala eMobility Marketing Manager Solvay Specialty Polymers

Presented at the SPE Automotive Composites Conference Novi, MI September 7, 2023

A Simple Question – A Complex Answer

Why are composite materials not more widely used for battery enclosures?

SOLVA

Composite Design Solution – Developed with Ricardo

- Virtual composite design project developed in two phases with Ricardo PLC
- Complete composite solution tray, cover and cross members
- Focus on improving volumetric and mass energy density
- Full structural loading simulations completed with composite design exceeding all requirements

Incumbent Metallic Design

Composite Phase 1 Design

Composite Phase 2 Design

Phase One Results Comparison

Presented at 2022 SPE ACCE

FuVA Metallic Design	Pack Specification	Concept Composite Design
428	Volume of Enclosure* (I)	349 (-18%)
220	Volume Density (Wh/l)	270 (+23%)
141	Mass (kg)	66 (-53%)
141	Mass Density (Wh/kg)	161 (+14%)
22	Structural Parts	2 (-90%)
373 144	Z-Height (mm)	205 (-45%) 136 (-6%)

*Volume of space taken up by the battery pack enclosure - exterior volume minus interior p again the pack enclosure - exterior volume minus interior p again the second seco

MAJOR BENEFITS

- Volumetric energy density
 improvement improve vehicle range
- Vehicle packaging benefit
 - more packaging space for batteries modules without decreasing vehicle interior space
 - reduced height and exterior volume improves the occupant/booth space
- Easier pack assembly and reduced number of seals - greatly reduced numbers of parts, potentially improved safety and durability
- Weight reduction (-75kgs)

(C)2021 Solvay. All rights reserved

Phase 2 Simulation/Analysis

- Improved module layout to increase power
 - Phase 1: 36 Modules
 - Phase 2: 14 Modules
- Analyzed Manufacturing (Draping) to optim cover design
- Updated Structural Analysis
 - Enclosure Pole Crash
 - Modal
 - Module Retention and Clamping
 - Endcap Side Pole Crash
 - Abuse Jacking
- EMI Shielding
 - Material Testing
- Thermal Runaway
 - Simulation
 - Material Testing

Composite Phase 1 Design

Composite Phase 2 Design

Manufacturing Simulation – Eliminate Sharp Corners

Draping Simulations - Top Cover Example

Final Design - Optimized for Manufacturing

SOLVAY

page 6

Structural Simulation

Most severe structural requirements at pack and vehicle level were met in simulation. Standards are a mix of international, regional and OEM. Generally the most difficult requirement was used as the target for each.

> Enclosure Crush - 4 Positions Assessed GB/T 31485 - 150mm pole - >100kN

> > Crush Force

0.12

LS-DYNA user inputConcept_U4_v008 - State 1 at time 0.00000

240000 Curv

21000

Structural Simulation - Modal Analysis

Modal Stiffness 11 Modes Assessed

Mode 1 - 73.3 Hz

Mode 11 - 89.3

Typical Mode 1 Requirement: >35 Hz. 50 Hz considered good.

Structural Simulation – Module Retention and Clamping

Target: Gap Pad Compressive strain >15% on 80% of interface with module and <40%

Contour Plot Contact Deformation / Normal(Gap Opening)

Upper fixing are placed directly on

Abuse Case Simulation

- Most severe structural requirements at pack and vehicle level were met in simulation.
- Standards are a mix of international, regional and OEM.
- Generally the most difficult requirement was used as the target for each.

NCAP Side Pole Crash 13.8kJ absorbed by pack - 16mm clearence to modules

Abuse Case Simulation

- Most severe structural requirements at pack and vehicle level were met in simulation.
- Standards are a mix of international, regional and OEM.
- Generally the most difficult requirement was used as the target for each.

Abuse Jacking – >13.7kN 4 Positions Assessed, 150mm <u>& 50mm</u>

Phase 2 Improvements

Pack Specification	Metal Design	Composite Design Phase 1	Composite Design Phase 2
Power (kWh)	94	94	104
Total Pack Mass (kg)	668	585	567
Number of Modules	36	36	14
Volume of Enclosure (L)	428	349 (-18%)	328 (-23%)
Volumetric Density (Wh/L)	220	270 (+23%)	317 (+40%)
Enclosure Mass (kg)	141	66 (-53%)	85 (-40%)
Mass Density (Wh/kg)	141	161 (+14%)	184 (+30%)

Major Benefits

- Volumetric energy density improvement
- Vehicle packaging benefit
 - more packaging space for batteries modules without decreasing vehicle interior space
 - reduced height and exterior volume improves the occupant/booth space
- Easier pack assembly and reduced number of seals
- Weight reduction
- Potential corrosion resistance and thermal management advantage

EMI Shielding - Internal Test per ASTM D4935

SOLVAY

Continuous Carbon Fiber >> Discontinuous Reinforcement (SMC)

Thermal Runaway Requirements

Solvay

Example: GB/T 38031 2020

- Protection of passengers primary concern
 - 5 min to allow for safe escape from vehicle
- Open to OEM interpretation.
- Battery layout and design specific

Thermal Runaway Simulation

Basic TR simulation carried out – no dynamic loading or break down of materials simulated

Thermal Runaway Simulation

Basic simulation - no dynamic loading or material degradation was simulated

	Component	Peak Temp, °C
1	Coolant Channel	655.8
2	Coolant Fluid	635.6
3	Cover Ribs	292.0
4	Cross Members	285.7
5	Top Cover	218.6
6	Base Tray	510.9
7	Adjacent Cells Module 2	45.7

Fire and Thermal Runaway Testing

Solvay Material Characterization for Thermal Runaway Resistance

Thermal Runaway Testing

UL2596 – Test Method for Thermal and Mechanical Performance of Battery Enclosure Materials

FR Epoxy GF - 2mm Thickness

No Rupture

FR Epoxy GF - 1mm Thickness

Large Rupture Damage

Aggressive Rupture

SOLVA

No Rupture

Solvay Composite Solution meets the Market Needs for Thermal Runaway Protection and EMI Shielding

Flame & Thermal Runaway Resistance

➤Loaded impingement under dvp

Fire Penetration & Cold Face

Abrasion & Flame (UL 2596)

Torch & Grit (TaG)
 Box Test (25 cells induced in thermal runaway under test coupon)

SolvaLite[®] 716FR (@2mm) passed successfully all the tests

Electromagnetic Compatibility (EMC)

ASTM D4935 testing capability in Solvay

Initial results on carbon fabric show very promising shielding effects

1mm allows to achieve SE > 80dB in the range 30-1000MHz

Virtual Engineering work initiated to support understanding

— 50dB = typical automotive target

Moving Forward - BEMA Project

Solvay working in collaboration with Airborne to demonstrate the complete understanding of Materials, Manufacturing and Design Real testing of composite battery enclosure to corrolate virtual/physical attributes

- Fire Protection
- Thermal Runaway
- EMI

Develop Design for Manufacture guidelines Integrate Manufacturing automation with business process automation

Complete assessment of cost and environmental impact

What Happened when We Considered the Complexity of Design/Materials/Manufacturing?

Composite Design Solution

A balanced solution providing market leading performance

- Meets many typical Industry requirements
 - Structural loads
 - Abuse cases
 - Environmental and fatigue
 - Fire protection
 - Thermal runaway
 - o EMI
- Design Improvement via Manufacturing Optimization
- 40% weight saving vs steel equivalent
- 30% increase in energy density (Wh/kg)

John Hackett Mark Wright Stefano Montani Mark Steele **Brian Baleno Duane Stirnemann** Erik LaBelle **Ricardo PLC**

Thank You!

For further information:

Greg Poterala Gregory.poterala@solvay.com +1.248.672.6519