

Simultaneous Estimation of In-Plane Permeability and Porosity in Fiber Reinforcement using Sensor Fusion

Wei Qi¹, Tzu-Heng Chiu², Yi-Kai Kao², Yuan Yao², Yu-Ho Chen³, Hsun Yang³, Chen-Chieh Wang³, Chia-Hsiang Hsu³ and Rong-Yeu Chang³

School of Information and Electrical Engineering, Zhejiang University City College, China;
 Department of Chemical Engineering, National Tsing Hua University, Taiwan;

3 CoreTech System Co., Ltd. (Moldex3D), Taiwan

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved.

CoreTech System

- Founded in 1995, a leading professional plastic injection molding simulation solution supplier for plastic injection molding industry
- World's largest professional team (250+ employees, 80% technical professionals) dedicated to plastics injection molding simulation
- Based on CAE as Core-Technology, provides advanced technologies and solutions for industrial demands with worldwide marketed "Moldex3D" series
- Provide leading software solution and attentive technical support to work with global customers for optimizing the process from design through manufacturing

Outline

- > Introduction
 - Why RTM?
 - Workflow of Moldex3D
 - What RTM Can Simulate?
- > Modeling and experiment
 - Experimental setup
 - Modeling and methodologies
 - Material measurement
 - Validation of simulation
- > Conclusion

Introduction

Why RTM? Workflow of Moldex3D What RTM Can Simulate?

Liquid Composite Molding (LCM) Processes

- > For manufacturing of composite parts with a high content of oriented reinforcement
 - The impregnation of a dry preform with a liquid matrix by liquid composite molding processes
 - Very high potential for economical manufacturing of high performance composite components
- > Types of processes covered
 - RTM, VARTM, RFI, CRTM

Reinforcement:

Glass fiber Carbon fiber Kevlar Natural plant fibers

Resin: Epoxy Vinyl ester

Unsaturated Polyester

Wang, M.-L.; Chang, R.-Y.; Hsu, C.-H., Molding Simulation: Theory and Practice. Hanser Publications 2018.

Composite Products

Goal:

> Reduce vehicle weight, and improve mechanical strength of the product

Success story in Resin Transfer Molding processes

Workflow of Integrated CAE Simulation for RTM

- > 3-step simulation procedure
 - Step 1: Preform forming
 - Step 2: Resin injection filling
 - Step 3: Demolding

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved. No contents are construed as providing a warranty, including any warranty of merchantability, accuracy, completeness, or fitness for purpose, or representation for which CoreTech System Co., Ltd. assumes any legal responsibility.

- > Moldex3D Mesh (RTM Wizard) helps users from building solid mesh to export input files
- > Help users:
 - Set ply groups, boundary conditions, and ply material groups

Moldex3D

Settings of Ply Orientations in Moldex3D

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved. No contents are construed as providing a warranty, including any warranty of merchantability, accuracy, completeness, or fitness for purpose, or representation for which CoreTech System Co., Ltd. assumes any legal responsibility.

Pressure / Flow Rate Control

> Resin infusion can be controlled by pressure or flow rate

CAE Verification on Mat Effects

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved. No contents are construed as providing a warranty, including any warranty of merchantability, accuracy, completeness, or fitness for purpose, or representation for which CoreTech System Co., Ltd. assumes any legal responsibility.

Anisotropic Permeability of Fiber Mat

- > Directional impact
 - Different filling behavior in thickness direction

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved. No contents are construed as providing a warranty, including any warranty of merchantability, accuracy, completeness, or fitness for purpose, or representation for which CoreTech System Co., Ltd. assumes any legal responsibility.

Venting Effect on the Filling Behavior

> Filling pattern with different length of venting boundary

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved.

Multi-Layer Fabric Mats

> Support to assign different permeability for different regions

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved. No contents are construed as providing a warranty, including any warranty of merchantability, accuracy, completeness, or fitness for purpose, or representation for which CoreTech System Co., Ltd. assumes any legal responsibility.

Modeling and experiment

Experimental setup Modeling and methodologies Material measurement Validation of simulation

> Process diagram:

Experimental Setup

> Process diagram:

• CCD Camera:

• Transparent mold with parallel-plate capacitor:

• Circuit board for capacitance measurement and communication:

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved. No contents are construed as providing a warranty, including any warranty of merchantability, accuracy, completeness, or fitness for purpose, or representation for which CoreTech System Co., Ltd. assumes any legal responsibility.

Experimental Setup

> Materials:

• Glass fiber sheet:

• Epoxy resin:

Produced by Swancor Ind. Co., Ltd. The type is 2502-A. The dielectric constant of the resin was measured as 4.25(pF/m). The viscosity of the resin was 0.56(Pa.s).

The one-dimensional flow mold

An integrated system to observe the flow front during filling process to get the permeability by Darcy's law

Visualization system

Capacitance detector

Modeling

> Darcy's law:

$$u = -\frac{K}{\mu} \cdot \nabla P$$

where **K** is the permeability tensor, ∇P is the pressure gradient, μ is the fluid viscosity, and **u** is the vector of Darcy velocity.

> Permeability tensor

$$\mathbf{K} = \begin{bmatrix} K_{11} & 0 & 0 \\ 0 & K_{22} & 0 \\ 0 & 0 & K_{33} \end{bmatrix}$$

Methodologies

> Capacitance Sensing for Porosity Measurement

$$C = \varepsilon \varepsilon_0 \frac{A}{d}$$

$$\log(\varepsilon_{mix}) = V_1 \log(\varepsilon_1) + V_2 \log(\varepsilon_2)$$

$$\log(\varepsilon_{mix1}) = V_{f1} \log(\varepsilon_{f1}) + V_r \log(\varepsilon_r)$$

$$\varepsilon_{mix1=} \varepsilon_{f1}^{V_{f1}} \varepsilon_r^{V_r} = \varepsilon_r^{V_f} \varepsilon_r^{1-V_f}$$

$$\varepsilon_{mix2=} \varepsilon_{f2}^{V_{f2}} \varepsilon_a^{V_a} = \varepsilon_r^{V_f}$$

$$C = C_1 + C_2 = \frac{\varepsilon_{mix1} \varepsilon_0 Wx}{d} + \frac{\varepsilon_{mix2} \varepsilon_0 W(L-x)}{d}$$

$$C = \frac{\varepsilon_0 W \varepsilon_r^{V_f} (\varepsilon_r^{1-V_f}-1)}{d} x + \frac{\varepsilon_0 W L \varepsilon_r^{V_f}}{d}$$

W = 1.5 cm, d = 0.3 cm, L = 30 cm, $\varepsilon_{\rm r}$ = 4.25, and ε_0 = 0.08855 pF/cm

Parameters used in numerical simulations.

Case study 1: study of nine-layer fiber

> Capacitance Sensing for Porosity Measurement: Experiment 1

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved.

Case study 1: study of nine-layer fiber

> Capacitance Sensing for Porosity Measurement: Experiment 2

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved.

Case study 1:study of nine-layer fiber

> Experimental and simulation results of the one-dimensional flow.

NO	Resin viscosity (Pa∙s)	Porosity	Permeability (m ²)
Expt.1	0.56	0.758	1.85×10 ⁻¹⁰
Expt.2	0.56	0.767	2.07×10 ⁻¹⁰
Avg.	0.56	0.763	1.96×10 ⁻¹⁰

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved.

Case study 1: Filling analysis

Case study 2: study of seven-layer fiber

> Capacitance Sensing for Porosity Measurement: Experiment 3

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved.

Case study 2: study of seven-layer fiber

> Capacitance Sensing for Porosity Measurement: Experiment 4

CoreTech System Co., Ltd. | Copyright© 2022 Moldex3D. All rights reserved.

Case study 2: study of seven-layer fiber

> Experimental and simulation results of the one-dimensional flow.

NO	Resin viscosity (Pa∙s)	Porosity	Permeability (m ²)
Expt.3	0.56	0.754	4.26×10 ⁻¹⁰
Expt.4	0.56	0.718	2.9×10 ⁻¹⁰
Avg.	0.56	0.736	3.58×10 ⁻¹⁰

Case study 2: Filling analysis

Conclusion

- > A good agreement is observed between the simulation and experiment.
 - It is helpful to predict the flow front during filling process.
 - Moldex3D simulation software can be used as a verification tool to compare the permeability.
- > The workflow helps to effectively control processing condition parameters and to reduce expensive and time-consuming trial-and-error manufacturing process.

Moldex3D **Thank you for your attention!**