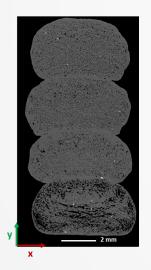
SPE ACCE September 6-8, 2023

Simulating the Effect of Bead Micro Structure on Interlayer Adhesion in Large Area Additive Manufacturing Polymer Composite Deposition

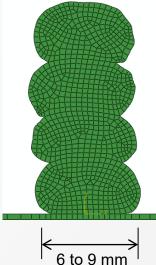
Douglas E. Smith and Neshat Sayah Contact: <u>douglas_e_smith@baylor.edu</u> Department of Mechanical Engineering


Baylor University

NSF Award Number 2055628



Presentation Overview


OBJECTIVE

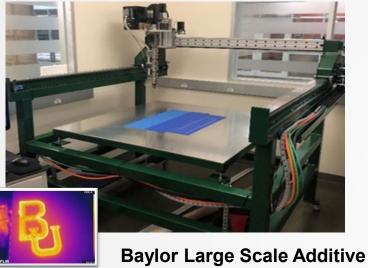
Assess the effect of materials and processing (i.e., carbon fiber content and orientation, voids, print location) on bead adhesion in a single bead stack from Large Area Additive Manufacturing (LAAM) polymer composite deposition.

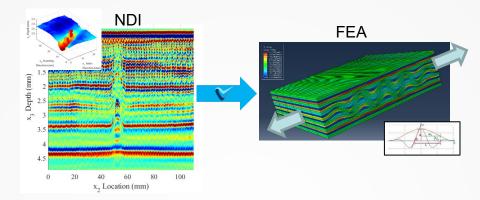
OUTLINE

Introduction Fiber Orientation and Adhesion Analysis LAAM Bead Preparation and Inspection Transient Thermal FEA Adhesion Assessment Conclusions

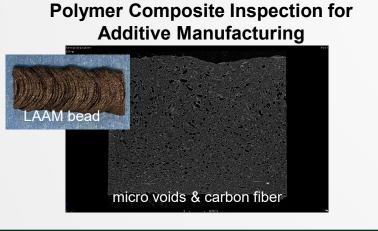
Baylor University

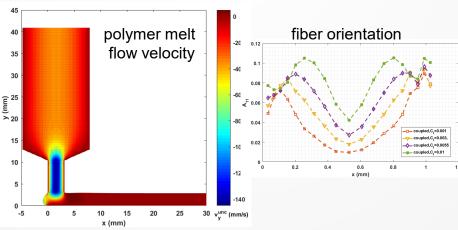
- Baylor University was chartered in 1845 by the Republic of Texas under the mission of Pro Ecclesia and Pro Texana
- Baylor has an enrollment of 18,000 students (14,000 undergraduate) in 127 undergraduate, 78 master's, and 46 doctoral programs
- Baylor named a Research 1 University in 2021!! 1 of 137 in US, 1 of 37 private universities.
- In 2004 ENG offered master's degrees, and in 2006 the departments of Mechanical Engineering (ME) and Electrical and Computer Engineering (ECE) were formed.
- In 2014 ME began their PhD program, and ECE began theirs in 2011
- ME PhD Spring 2023 enrollment of 46 PhD students.
- Baylor Materials Lab: 6 faculty, 19 PhD students, 8 professional staff, 12K ft² lab/office space, funding via Verifi Tech., NSF, Sandia National Labs, L3-Harris, NASA, AFOSR, ONR, ORNL, Spirit Aero., Lemond, Axion, etc...
- Current job opening in our Materials Lab for Post Doc in Additive Manufacturing



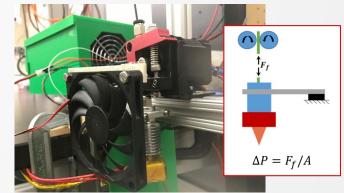

Baylor BRIC

Carbon Fiber Composites AM Research


Baylor Large Scale Additive Manufacturing (LAAM)


Laminated Composite NDI -> FEA

optimal topology


Topology Optimization for Additive Manufacturing

LAAM Bead Deposition Simulation

3D Printing Filament Rheometer

INTRODUCTION

Large Scale Additive Manufacturing

Polymer Composite Extrusion/Deposition AM

ORNL Strati - printed in 44 hrs ORNL Shelby Cobra

ORNL 3D printed house & utility vehicle

Tooling Applications

BAAMC

wind turbine blade mold

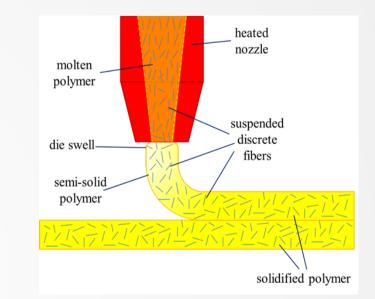
up to 8' x 20'x 6'

boat hull master pattern

sand casting core

layup tooling for composites

Carbon Fiber ABS in Additive Manufacturing


- Advantages of Carbon Fiber (CF) filled polymers in FDM
 - Higher modulus (up 4.5X with 13% CF/ABS [1])
 - Higher strength (up 3X with 13% CF/ABS [1])
 - Processed with same equipment
 - Increased material selection
 - Decreased CTE
 - Increased thermal conductivity
 - Increased part dimensional stability

taken from Tekinalp [1]

- Warpage

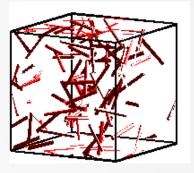
- Voids

- Fibers suspended in molten polymer align with shear and extensional flow directions
- Drawbacks of polymer extrusion/deposition process:
 - Weak inter-bead adhesion
 - Inferior mechanical properties
 - Predicting printability limitted

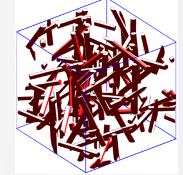
FIBER ORIENTATION AND ADHESION ANALYSIS

Fiber Orientation Tensor Prediction

• Fiber orientation is calculated using orientation tensors [1]


$$\frac{DA}{Dt} = -\frac{1}{2}(\Omega \cdot A - A \cdot \Omega) + \frac{1}{2}\lambda(\Gamma \cdot A + A \cdot \Gamma - 2\mathbb{A}:\Gamma) + D_r$$

where:


 $\begin{array}{l} \mathsf{A}_{ij} = \oint p_i p_j \psi(\mathbf{p}) \mathrm{dS} = \mathsf{the} \ \mathbf{2^{nd}} \ \mathsf{order} \ \mathsf{fiber} \ \mathsf{orientation} \ \mathsf{tensor} \\ \mathbb{A}_{ijkl} = \oint p_i p_j p_k p_l \psi(\mathbf{p}) \mathrm{dS} = \mathsf{the} \ \mathbf{4^{th}} \ \mathsf{order} \ \mathsf{fiber} \ \mathsf{orientation} \ \mathsf{tensor} \\ \psi = \mathsf{the} \ \mathsf{probability} \ \mathsf{density} \ \mathsf{function} \ \mathsf{for} \ \mathsf{fiber} \ \mathsf{orientation} \ \mathsf{tensor} \\ p = \mathsf{the} \ \mathsf{unit} \ \mathsf{vector} \ \mathsf{along} \ \mathsf{the} \ \mathsf{length} \ \mathsf{of} \ \mathsf{the} \ \mathsf{fiber} \\ \mathcal{O} = \left[(\nabla v) - (\nabla v)^{\mathrm{T}} \right] = \mathsf{the} \ \mathsf{vorticity} \ \mathsf{tensor} \\ \Gamma = \left[(\nabla v) + (\nabla v)^{\mathrm{T}} \right] = \mathsf{the} \ \mathsf{strain} \ \mathsf{rate} \ \mathsf{tensor} \\ D_r = \mathsf{Rotary} \ \mathsf{Diffusion} \ \mathsf{Function} \end{array}$

 Fiber orientation tensor approach provides a computationally efficient means to predict fiber microstructure which is used in major mold filling software.

Moldex 3D

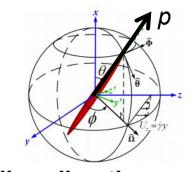
Random Orientation $A_{ij} = \begin{bmatrix} 1/3 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$

Uniaxial Alignment

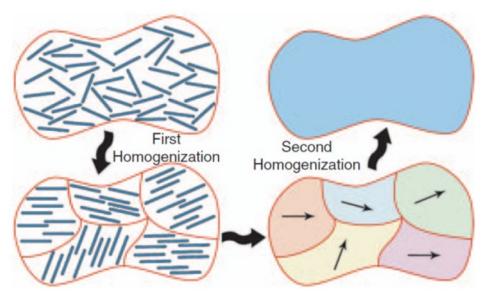
 $A_{ij} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Moldflow

Baylor University


Short Fiber Composite Properties

- Computing elastic properties for unidirectional short fiber composites [1]
 - Methods: Bounding model, Eshelby's equivalent inclusion, Self-constraint method, Halpin-Tsai, Mori-Tanaka, or Lielens
- For misaligned fibers, the closed form expressions of material stiffness derived in Jack and Smith 2006 [2] are used
 - Orientation homogenization method
 - Stiffness prediction is based on the fiber probability orientation distribution $\psi(\theta, \phi)$


$$\left\langle C_{ijkl} \right\rangle = \oint_{S^2} \boldsymbol{Q}_{pi}(\theta, \phi) \boldsymbol{Q}_{qj}(\theta, \phi) \boldsymbol{Q}_{rk}(\theta, \phi) \boldsymbol{Q}_{sl}(\theta, \phi) \overline{\boldsymbol{C}}_{pqrs} \psi(\theta, \phi) d\boldsymbol{S}$$

Orientation averaged conducitivity tensor evaluated in a similar manner [3]

$$\langle k_{ij} \rangle = \oint_{S^2} \boldsymbol{Q}_{pi}(\theta, \phi) \, \boldsymbol{Q}_{qj}(\theta, \phi) \bar{k}_{pq} \psi(\theta, \phi) d\boldsymbol{S}$$

fiber direction vector

material homogenization process

Orientation Averaged Thermal Conductivity

Given 2nd order fiber orientation tensor A_{ij} and composite constituent component values, the orientation-averaged conductivity tensor is [1]

$$\langle k_{ij} \rangle = \begin{bmatrix} \beta_1 & A_{12}(\bar{k}_{11} - \bar{k}_{22}) & A_{13}(\bar{k}_{11} - \bar{k}_{22}) \\ A_{12}(\bar{k}_{11} - \bar{k}_{22}) & \beta_2 & A_{23}(\bar{k}_{11} - \bar{k}_{22}) \\ A_{13}(\bar{k}_{11} - \bar{k}_{22}) & A_{23}(\bar{k}_{11} - \bar{k}_{22}) & \beta_3 \end{bmatrix}$$

where

$$\beta_{1} = \frac{1}{3} \left[(1 + 2A_{11} - A_{22} - A_{33})\bar{k}_{11} + (2 - 2A_{11} + A_{22} + A_{33})\bar{k}_{22} \right]$$

$$\beta_{2} = \frac{1}{3} \left[-(-1 + A_{11} - 2A_{22} + A_{33})\bar{k}_{11} + (2 + A_{11} - 2A_{22} + A_{33})\bar{k}_{22} \right]$$

$$\beta_{3} = \frac{1}{3} \left[-(-1 + A_{11} + A_{22} - 2A_{33})\bar{k}_{11} + (2 + A_{11} + A_{22} - 2A_{33})\bar{k}_{22} \right]$$

Constituent Components

$$k_m = k_{matrix}$$

 $k_f = k_{fiber}$
 v_f = fiber volume fraction
 l/d = fiber aspect ratio

parameter

ABS & CFABS

Supplier

CF weight %

CF vol %

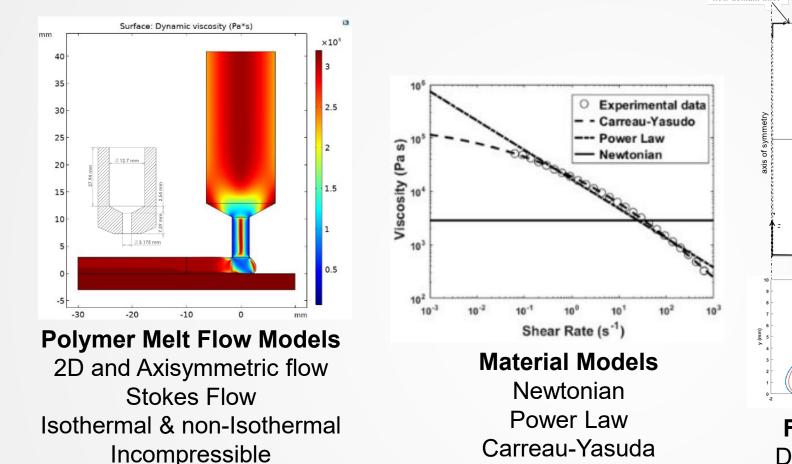
mean *l/d*

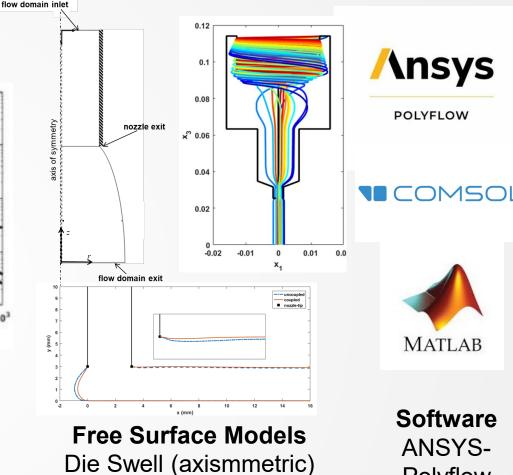
Unidirectional thermal conductivities are computed from [2]

$$\bar{k}_{11} = \frac{1 + 2\left(\frac{l}{d}\right)\mu_{1}\nu_{f}}{1 - \mu_{1}\nu_{f}}k_{f} \qquad \bar{k}_{22} = \frac{1 + 2\mu_{2}\nu_{f}}{1 - \mu_{2}\nu_{f}}k_{f}$$
$$\mu_{1} = \frac{\frac{k_{f1}}{k_{m}} - 1}{\frac{k_{f1}}{k_{m}} + 2\frac{l}{d}} \qquad \mu_{1} = \frac{\frac{k_{f2}}{k_{f2}}}{\frac{k_{f2}}{k_{m}} + 2}$$

where

value


PolyOne Crop. Avon Lake, OH


13

8.4

43.6

Polymer Composite Deposition Simulation

Deposition (planar)

Software ANSYS-Polyflow COMSOL MATLAB

Z. Wang, Z. Fang, Z. Xie, D.E. Smith, *Polymers* 14(22) (2022)
Z. Wang, D.E. Smith, *Comp. Part B*, 219 (2021) 108811
Z. Wang, D.E. Smith, D.A. Jack, *Add. Mfg*. 43 (2021) 102006
Z. Wang, D.E. Smith, *Materials*, 14(10) (2021) 2596
Z. Wang, D.E. Smith, *Comp. Part B*. 177(15) (2019) 107284

Creeping flow

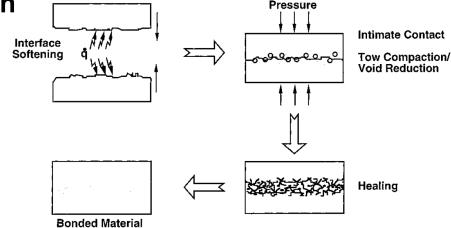
Gravity, body forces, inertia ignored

Quasi-steady flow

B. Heller, D.E. Smith, D.A. Jack, Add. Mfg. 25 (2019) 227-238
R. Russell, B. Heller, D.A. Jack, D.E. Smith, Jn. Comp. Sci. 2(2) (2018) 26
Z. Wang, D.E. Smith, Jn. Comp. Sci. 2(1) (2018) 10
B. Heller, D.E. Smith, D.A. Jack, Add. Mfg., 12(B) (2016) 252-264

PTT (Visco-Elastic)

Baylor University


Bead Interface Healing Evaluation

- The principle of fusion bonding is commonly applied to the joining or welding of polymer melts which involves applying heat and pressure at the interface
- Degree of Healing D_h under isothermal conditions is written with respect to weld time t_w as [1]

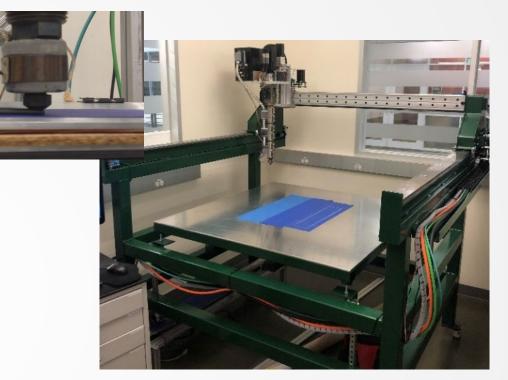
$$D_h(t) = \frac{\sigma}{\sigma_{\infty}} = \left(\frac{t}{t_w}\right)^{1/4}$$

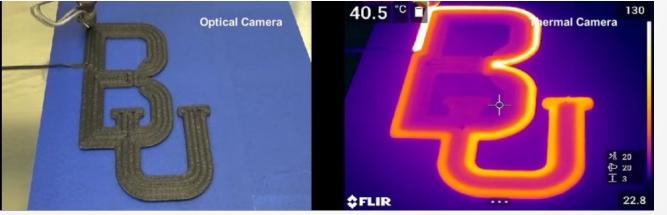
• The above is extended to a non-isothermal degree of healing evolution with time as [2]

$$D_h(t) = \frac{\sigma}{\sigma_{\infty}} = \left[\int_0^t \frac{1}{t_w(T)} dt\right]^{1/4}$$

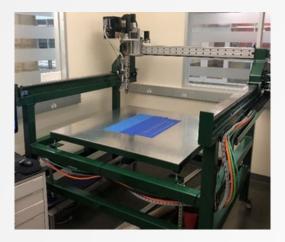
Taken from Yang and Pichumani [2]

• Weld time t_w may be computed for ABS using experimental data from the literature ($Q_d = 388.7 \text{ KJ/mol}$, R = universal gas constant) as [3] $t_w(T) = 1.080 \times 10^{-47} \exp\left(\frac{Q_d}{RT}\right)$




LAAM BEAD PREPARATION AND INSPECTION

Baylor Large Area Additive Manufacturing


- Baylor LAAM
 - Print Bed: 4' x 4' x 6"
 - Deposition Rate: 19 lbs/hr
 - Nozzle Size: 0.125 and 0.25 inch
 - Input Material Format: Pellets
- Extruders:
 - Strangpresse Model 19 (ABS, PLA)
 - Dyze Design Pulsar (ABS, PLA, PEEK, PEI, TPE, TPU)

LAAM Sample Prep and Scanning

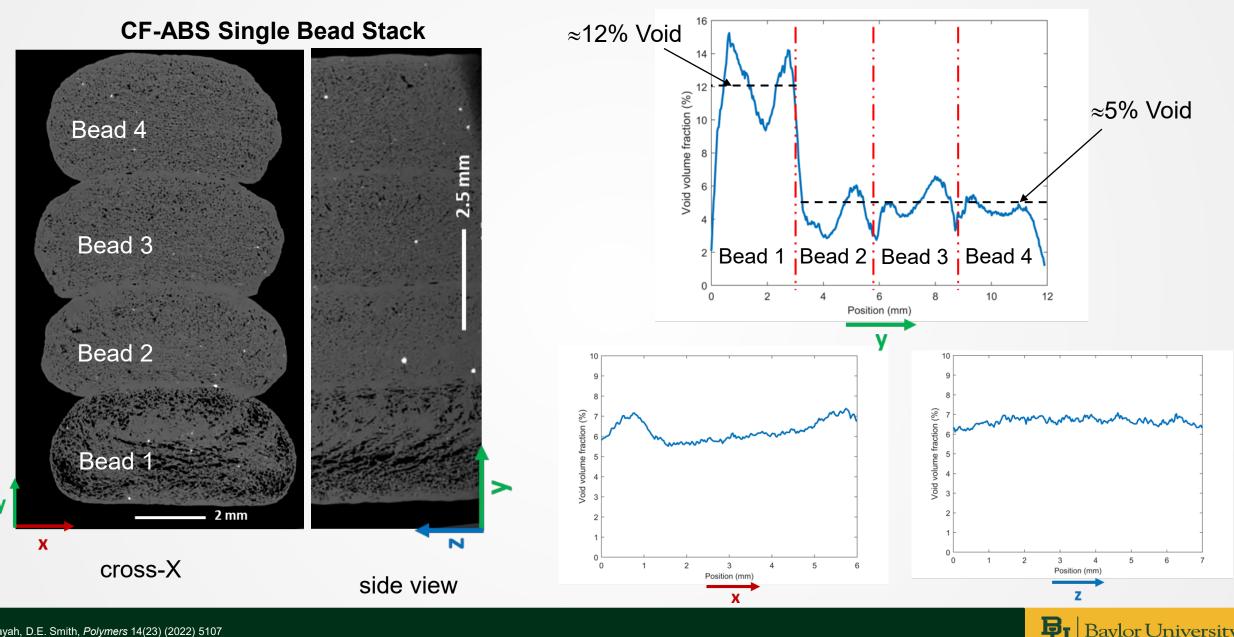
Baylor's LAAM system

parameter	value
temperature	220C
print height	2.5 mm
screw speed	90 RPM
nozzle diam	3.175 mm

Buehler IsoMet Low Speed saw

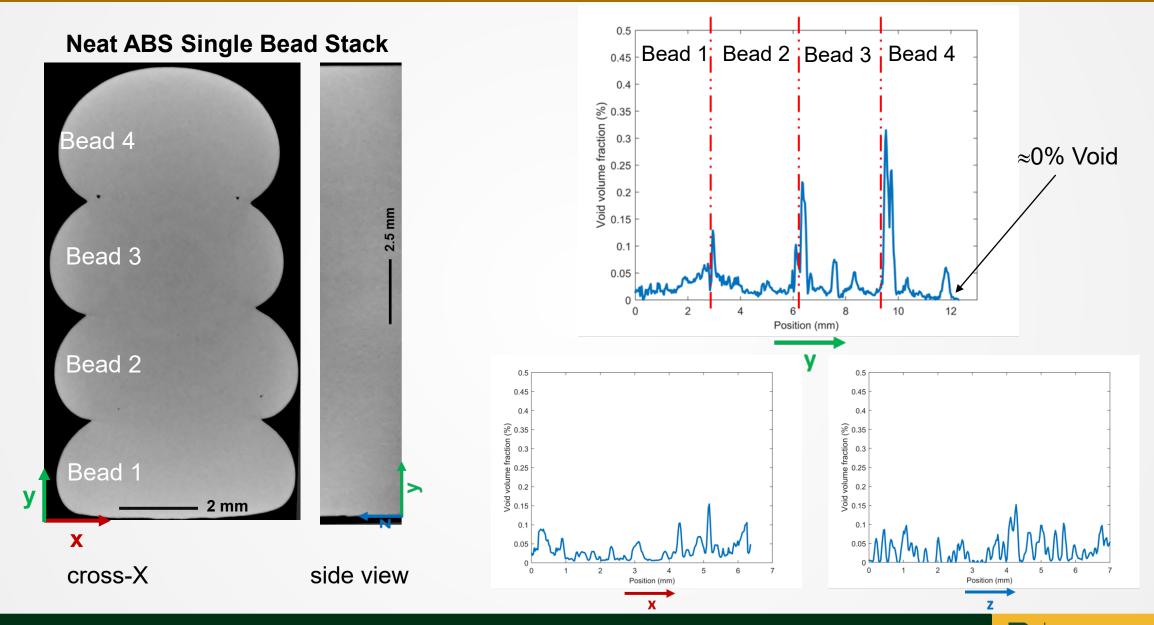
13 wt % Carbon fiber reinforced ABS 3D printed using LAAM system

NSI X3000 micro-CT scan parameters.

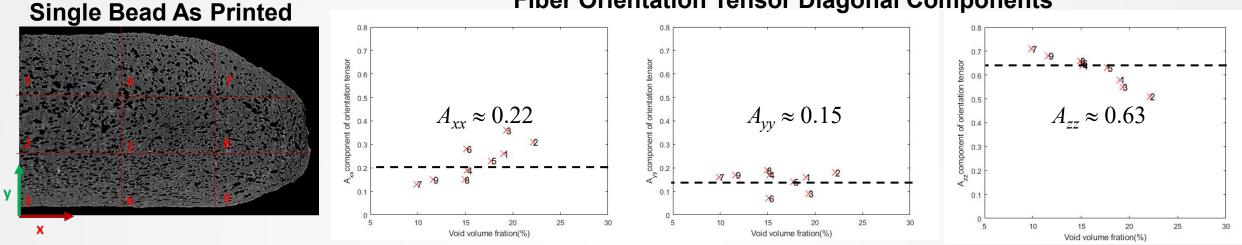

study	void	fiber
head	micro	nano
voltage	55 kV	60kV
current	80 µA	900 µA
resolution	10 µm	1.4 µm

卢ī

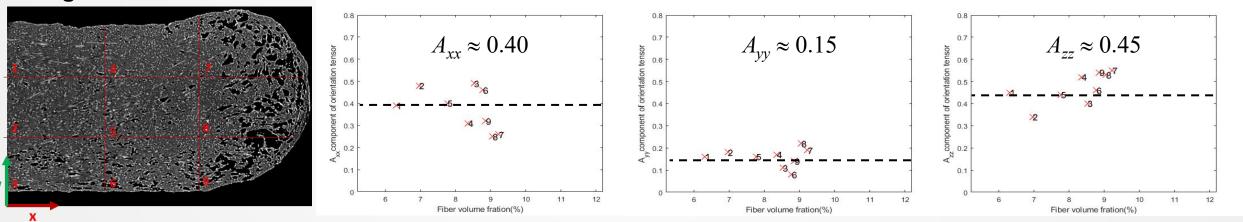
Baylor University


LAAM 4-Bead CF-ABS micro-Void Analysis

N. Sayah, D.E. Smith, *Polymers* 14(23) (2022) 5107


Baylor University

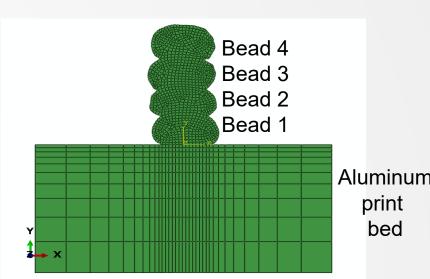
LAAM 4-Bead Neat ABS micro-Void Analysis

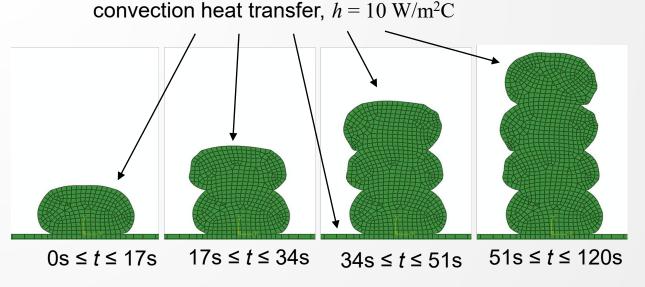


LAAM CF-ABS Fiber Orienation Analysis

Fiber Orientation Tensor Diagonal Components

Single Bead Printed and Rolled


TRANSIENT THERMAL FEA



Transient Thermal FEA Model

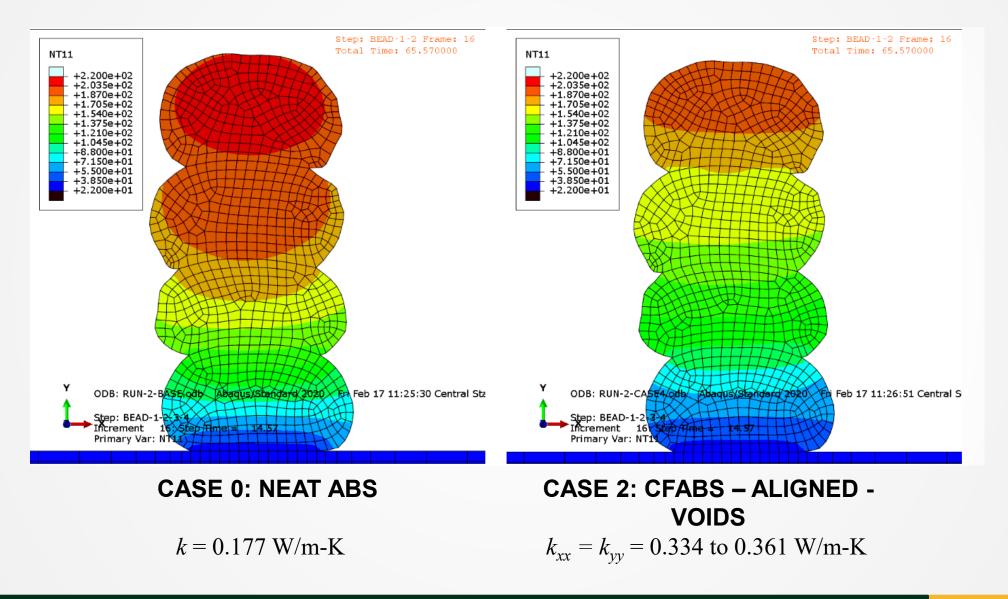
- Single bead stack geometry taken from µCT scan data
- Linear transient thermal analysis performed in #ABAQUS
 - 2D heat transfer approximation
 - Element addition feature employed
 - Beads added at 17s intervals
 - Surface heat transfer applied to all external element edges
 - Conductivity computed from orientation tensors
 - Material properties scaled to account for intrabead voids
- Model Material Properties literature values

property	units	value
ABS conductivity	W/m-K	0.177
ABS heat capacity	J/g-K	2.08
ABS density	kg/m³	1040
Carbon fiber conductivity	W/m-K	150
Carbon fiber heat capacity	J/g-K	1.15
Carbon fiber density	kg/m ³	1700

Simulation Cases Considered

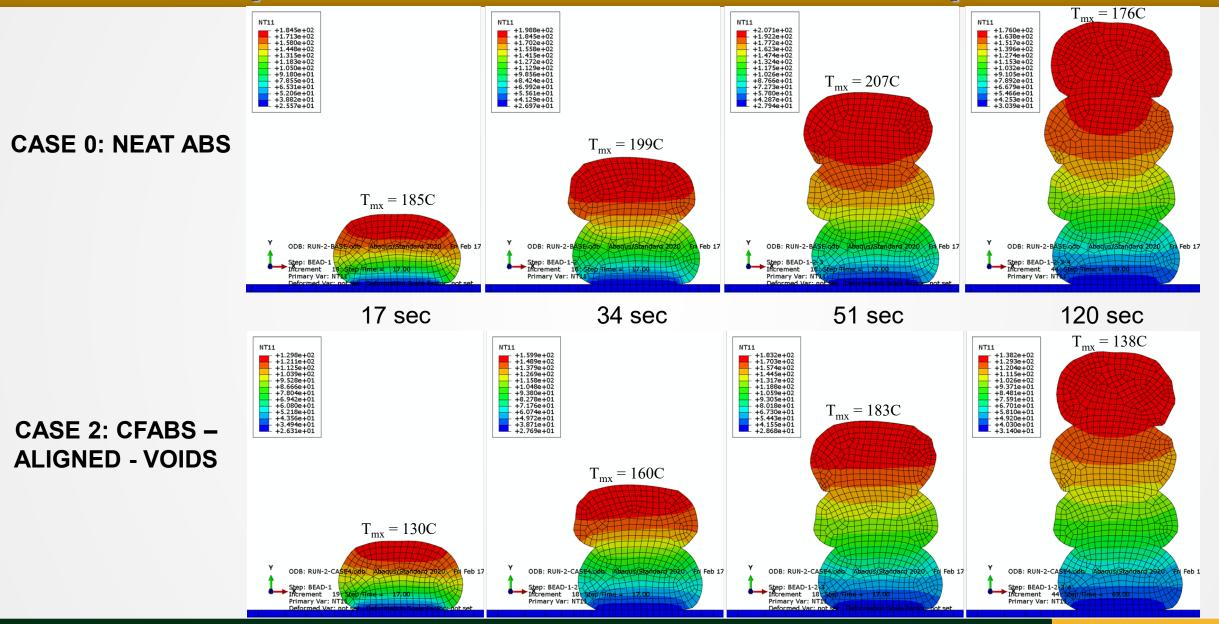
CASE	SAMPLE	FIBER ORIENTATION	VOIDS
0	NEAT ABS	NONE	NO
1	CF ABS	ALIGNED	NO
2	CF ABS	ALIGNED	YES
3	CF ABS	UNIFORM	NO
4	CF ABS	UNIFORM	YES

Aligned Distribution

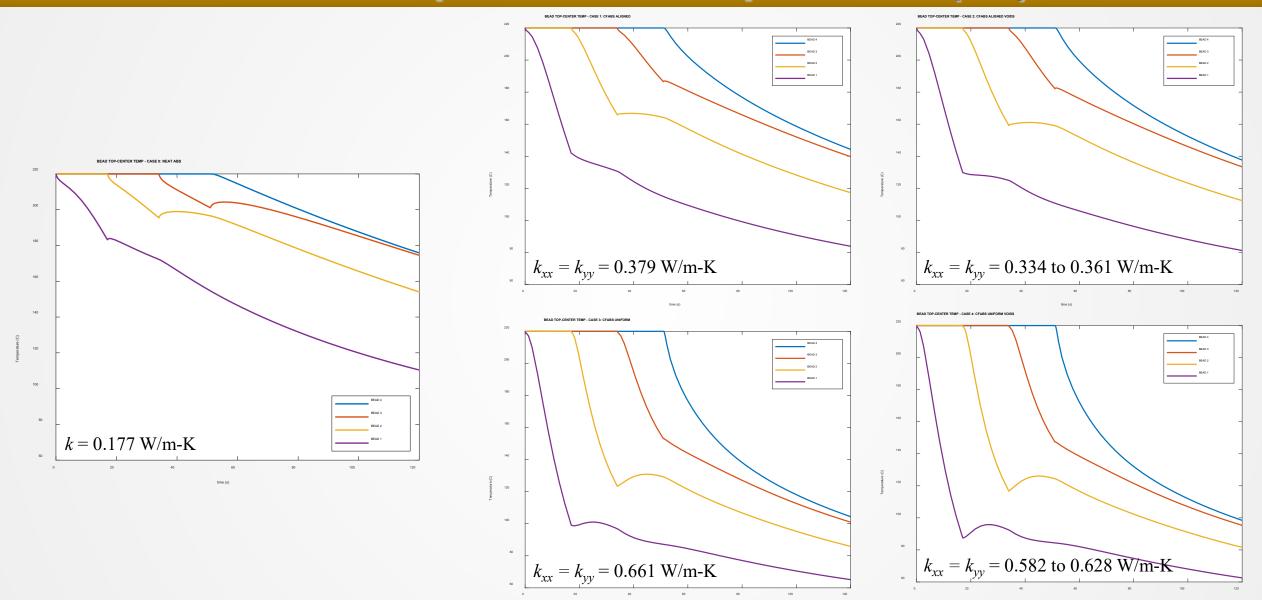

$$A_{ij} = \begin{bmatrix} 0.125 & 0 & 0 \\ 0 & 0.125 & 0 \\ 0 & 0 & 0.75 \end{bmatrix}$$

Uniform Distribution

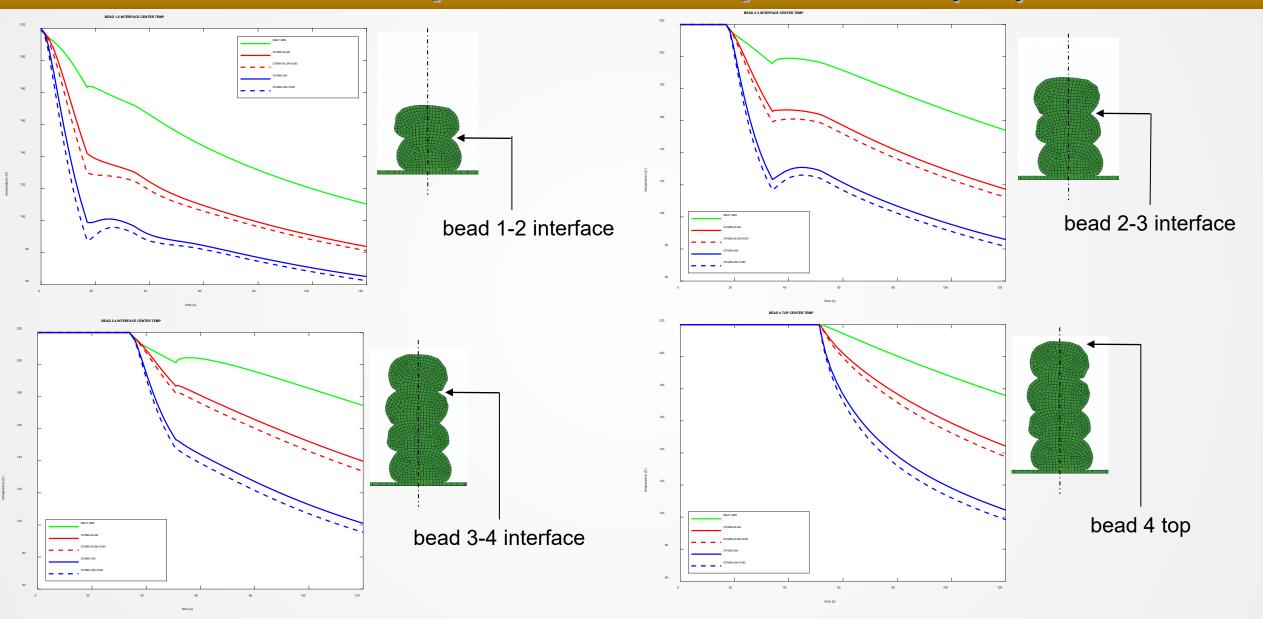
$$A_{ij} = \begin{bmatrix} 1/3 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$$



Transient Thermal FEA Bead Print Simulation



Temperature Prior to Next Bead Deposition



Bead Top-Center Temperature (°C)

Bead Top-Center Temperature (°C)

Bead Top Center Temperature

Temperature just prior to next bead deposition

 $T(^{\circ}C)$ at t = 120s

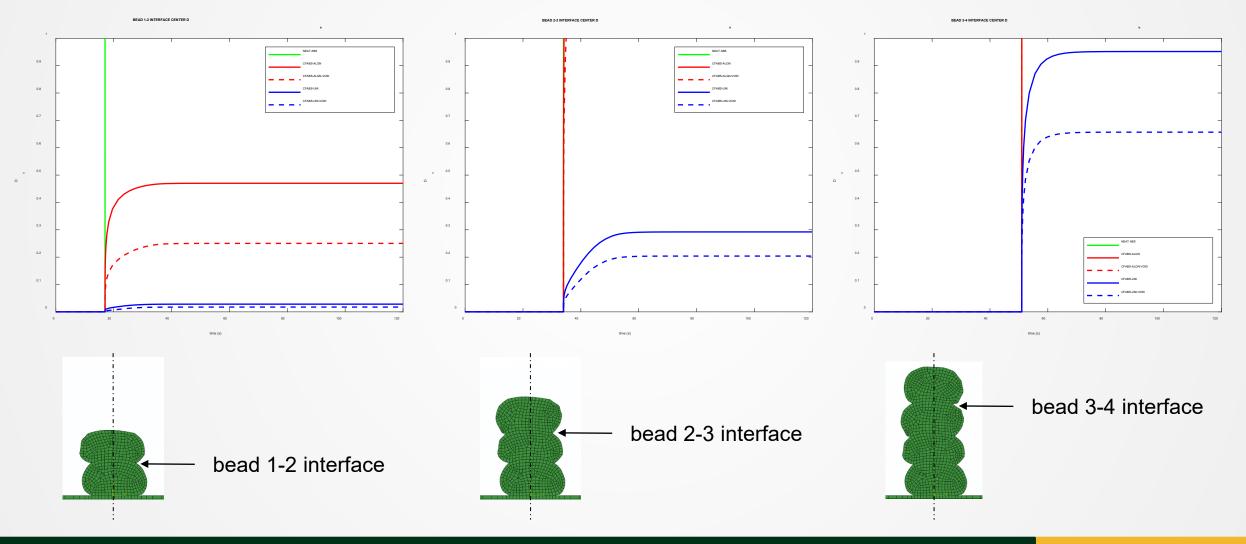
CASE	SAMPLE	FIBER	VOID	BEAD 1	BEAD 2	BEAD 3	BEAD 4
0	NEAT ABS	NONE	NO	110.	154.	175.	176.
1	CF ABS	ALGN	NO	83.9	117.	140.	144.
2	CF ABS	ALGN	YES	81.2	112.	133.	138.
3	CF ABS	UNI	NO	65.1	85.9	101.	104.
4	CF ABS	UNI	YES	62.5	81.6	95.4	98.4

increased distance from print bed

OBSERVATIONS

Neat ABS retains heat longer

Increased conductivity from carbon fiber increases heat transfer into print bed Higher alignment along bead → Increased bead temperature Voids tend to decrease bead temperature



ADHESION ASSESSMENT

Bead Centerline Interface D_h

$$D_h(t) = \frac{\sigma}{\sigma_{\infty}} = \left[\int_0^t \frac{1}{t_w(T)} dt\right]^{1/4}$$

Bead Interface Center D_h

 D_h at t = 120s

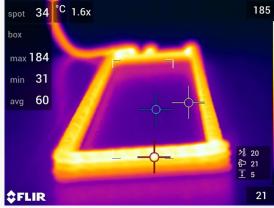
CASE	SAMPLE	FIBER	VOID	BEAD 1-2	BEAD 2-3	BEAD 3-4
0	NEAT ABS	NONE	NO	7.1	21.	27.
1	CF ABS	ALGN	NO	0.47	3.3	8.3
2	CF ABS	ALGN	YES	0.25	2.3	6.4
3	CF ABS	UNI	NO	0.028	0.29	0.95
4	CF ABS	UNI	YES	0.018	0.20	0.66

V

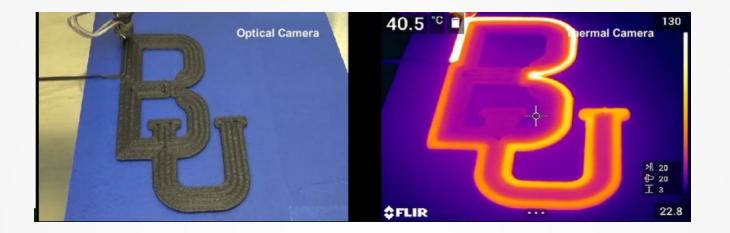
increased distance from print bed

OBSERVATIONS

Increased adhesion further from print bed Neat ABS has highest likelihood of adhesion Increased transverse conductivity -> Decreased likelihood of adhesion Higher fiber alignment along bead → Increased likelihood of adhesion Voids tend to decrease likelihood of adhesion



CONCLUSIONS



Conclusions

- Interlayer adhesion continues to be a limiting factor in adoption of large scale polymer composite deposition parts
- Single bead stack FEA simulations provided insight into cooling and adhesion
 - Carbon fibers increase cooling of bead stack
 - Higher fiber alignment along print bead improves adhesion
 - Adhesion enhanced with prolonged high temperature
 - Increased likelihood of adhesion away from print bed
 - Intralayer voids have less impact but tend to decrease likelihood of adhesion
- Future investigations should include experimental validation, additional beads, bead arrays, orientation tensor variation across bead, heat transfer coefficient identification, additional processing parameters, etc..

THANK YOU!

