

Fatigue Methodology for the Polymeric Materials

General Motors University of Michigan – Dearborn Hexagon : Satvir Aashat, AK Khosrovaneh (retired)

- : Professor Hong Tae Kong
- : Dustin Souza

: April 27th, 2023

Date

What should one pay attention to?

- Composites:
 - Combination of 2 or more constituent materials in order to produce a new material with different/increased properties compared to the constituents

What should one pay attention to?

- Consider plastics and composites for what they are
 - Anisotropic/Orthotropic by nature

Stress

What should one pay attention to?

- Consider plastics and composites for what they are •
 - Anisotropic/Orthotropic by nature
 - Nonlinear
 - Strain rate dependent
 - Temperature dependent

What should one pay attention to?

- Consider plastics and composites for what they are
 - Anisotropic/Orthotropic by nature
 - Nonlinear
 - Rate dependent
 - Temperature dependent
 - Complex failure mechanisms/modes

http://mechanicalengineeringblog.tumblr.com/post/121684647734/ failure-index-vs-strength-ratio-in-a-quadratic

Fiber buckling

Dario Tipa, Thesis "Progettazione di strutture in tessuto composito: tecniche di omogeneizzazione e simulazione numerica", March 2016, Universita di Genova, Figures 2.15 to 2.17

What should one pay attention to?

What should one pay attention to?

HEXAGON

Recognize the effects of the manufacturing process on the resulting properties

What should one pay attention to?

- The mechanical performance of the part depends on:
 - the orientation of the fibers relative to the loading type and direction
 - the non-linear, strain rate dependent, temperature dependent behavior of the resin
- Fiber orientation in the part is governed by the manufacturing process
- Accurate predictions require a solution that captures the effect of the fiber orientation and the performance of the resin.

Bridging gap between manufacturing and performance

HEXAGON

Material models

- Digimat material models and data accessible by ALL Digimat users
 - 600+ Grades and 58,000+ Digimat material models → largely built by material suppliers for their potential customers
 - Thermoplastic & Thermosets
 - Glass/Carbon reinforcement

Mapping

- Fields to map:
 - Fiber orientations
 - Volume fractions
 - Initial stresses
 - Temperature fields
 - Porosities
 - Weld lines

Different meshes

Porosity

Orientation tensors

Weld lines

Coupling to FEA solvers

Application

Methodology Workflow

Introduction

- Objective
- : Evaluate accuracy of fatigue predictions subjected to variable amplitude loading

- Solvers
 - Structural : Optistruct
 - Material modeling : Digimat
 - Fatigue : nCode
- Part : Bracket (shown in top right)
- Material : PA6GF30
- Loading : Variable amplitude loading (shown below)

Methodology Workflow

Simulation setup

Component Testing

Test setup

- Manufacturing
 - Part
 - Conditioning
- : 5 brackets : RH0 (dry-as-molded)

• Testing

- Location
- Conditioning
- Loading

: RH50

: University of Michigan-Dearborn

: Normalized variable amplitude loading with multiple scale factors applied

Time (secs)

Component Testing

Simulation setup

- Unit load case
 - Solver
 - Loading

: Unit load

:

 \bigotimes

: Optistruct & Abaqus

- Bolted location
- Loading
- Peak stress location :
- Fatigue load case
 - Solver

: nCode

Loading

: Normalized variable amplitude loading with multiple scale factors applied

Time (secs)

Material Model

Initial model

- Overview
 - Matrix
 - Reinforcement : 30% glass fibers

: PA6

- Calibration •
 - Stiffness
 - · Fatigue material model capabilities, at the time, limited stiffness to purely elastic
 - Elastic stiffness calibrated to 0°, 25°, 45° & 90° quasi-static stress-strain curves
 - Digimat used to calibrate stiffness
 - Fatigue
 - Fatigue failure indicator calibrated to 0°, 25° & 90° S-N curves
 - · Model validated on coupon FEA with results displayed on right
 - · Great correlation to coupon data via coupon FEA
- Results •
 - · Initial Digimat fatigue model did not predict good results
 - Lifetimes were lower by a factor of 200 (Results shown on next slide)

Simulation – Initial material model

Normalized load levels tested

- Specimen 6 : 1
- Specimen 7 : 0.946
- Specimen 8 : 0.892
- Specimen 9 : 0.851
- Specimen 10 : 0.848

Results

- Simulation results :>3 decades from experimental results
- % difference
- : >1,300% average

Load Level	Experimental (Number of Repeats)	Initial Material Model (Number of Repeats)	% Difference
Specimen 6	1555	0.8173	1902
Specimen 8	5727	7.573	755

Investigation

Reasons for differences between test & analysis

- Test fixturing & test equipment
- Boundary conditions between test & analysis
- Conditioning of part
 - Relative humidity is critical when working with nylons
 - Tested part moisture level must match data used to calibrate material model
- Plasticity consideration
 - Scale factors typically applied to account for plasticity
 - Required factor >0.8 \rightarrow Very large for plasticity considerations

Material Model

Adjusted model

- Account for plasticity
 - Stiffness of material model remains unchanged
 - New methodology developed to create new S-N curves for 0°, 25° & 90°
 - Final Digimat material model was developed based on new S-N curves

Methodology Workflow

Simulation setup

Summary

- Criteria for failure : Significant drop in load bearing capability of component
- Component testing
 - Critical number of repeats
 - Pictures of failure location
- Simulation
 - Initial material model (with conventional fatigue material modeling methodology)
 - Critical number of repeats
 - Failure location
 - Updated material model (with new fatigue material modeling methodology accounting for plasticity)
 - Critical number of repeats
 - Failure location
- Comparison of experimental results to two different simulation approaches to highlight differences

Component testing

Specimen number	6	7	8	9	10
Load cycle scaling	1	0.946	0.892	0.851	0.848
Total repeats	1,555	1,757	5,727	8,316	16,964

Critical number of repeats

- Specimen 6-10 used for correlation work
- Failure location
 - Similar in all tests
 - Filet region below single bolt fixture at top of part

Simulation – Final (Updated) material model

Normalized load levels tested & simulation

:1

- Specimen 6
- Specimen 7 : 0.95
- Specimen 8 : 0.89
- Specimen 9 : 0.85
- Specimen 10 : 0.848

Results

- Simulation results : <1 decade from experimental results
- % difference : <55% average
- Conclusion
 - New methodology successfully predicts critical repeats on bracket
 - · Account for plasticity is critical in obtaining accurate results
 - Streamlined methodology now available, via Digimat + nCode, to account for plasticity

Conclusions

Inputs

- Two Digimat fatigue material models used:
 - Initial material model (used in phase 2)
- : Does not account for plasticity in any way

• Updated material model

: Accounts for plasticity via new method

- Part tested
 - 5 brackets used for fatigue correlation work
 - · Specimens 6-10 used for correlation work at various load levels
 - · Variable loading amplitude profile was used, with different scale factors, to consider all portions of material curve

Results

- Initial material model, without plasticity, showed results that were 3+ decades off from experimental results
- Updated material model, with plasticity, showed results that were <1 decade off from experimental results → Excellent correlation
- Automated methodology now available within Digimat + nCode to account for plasticity without need to create update S-N curves

THANK YOU!

