

SIMUTENCE

Digital Composites Engineering

Opportunities and Challenges of Composites Forming Simulation for Digital Product Development

SPE ACCE 2023

Dominik Dörr, Christian Poppe, Martin Hohberg, Stefan Haas, Alexander Bernath

September 7, 2023

- 1. Company introduction
- 2. SimuDrape
- 3. Industrial use cases
- 4. Summary and conclusion

- 1. Company introduction
- 2. SimuDrape
- 3. Industrial use cases
- 4. Summary and conclusion

Opportunities through advanced simulation for composites

Manufacturing **尘 Product design** Engineering

Our goal is to enable efficient products as well as efficient manufacturing through advanced simulation.

Integrated process simulation enables cost- & time-efficient product development cycles.

Benefits of the SIMUTENCE virtual process chain

5

Integrated process simulation enables cost- & time-efficient product development cycles.

Manufacturing process technologies

technologies relevant for large and medium scale production

Opportunities for collaboration

Training & consulting

Identification of suitable engineering and simulation strategies Consulting and support on strategies for materials characterization, product development, and part manufacturing

Engineering services

 Product development as a service
Virtual design and optimization of manufacturing processes and parts
Prediction of manufacturing effects
Materials characterization and modeling

Software add-ons

Tailored **software add-ons** for enhancing established simulation software

Self-developed **simulation approaches** that go beyond the state of the art

I Customized solutions for your challenge

We tailor our collaboration to your specific challenge

2. SimuDrape

Key features in a nutshell

2. SimuDrape

Working principle

10

SimuDrape covers all steps required for modeling and analysis of composites forming.

- 1. Company introduction
- 2. SimuDrape
- 3. Industrial use cases
- 4. Summary and conclusion

Virtual design of thermoforming processes

SIMUTENCE Digital Composites Engineering

Ø Project goals

- Creation of a standardized process for the virtual design of thermoforming processes with tape laminates
- Application to an undercover protection (skid plate) for a battery electric vehicle (BEV)

for a battery electric vehicle (BEV)

Virtual design of thermoforming processes

Virtual design of thermoforming processes

1 Materials analysis

Step 1.1: SimuTherm model setup

- 1D thermal analysis through the Simutence tool SimuTherm
- Predictions almost in real-time
- Determination of the processing window using through-thickness prediction of temperature and crystallization

Schematic of the SimuTherm discretization

Step 1.2: Analysis of cooling without/prior to forming

- Modeling of cooling of the laminate after release from the oven:
 - Quiescent environment (free convection)
 - Transfer (Forced convection)
- Determination of the initial forming temperature as a function of transfer time

Step 1.3 Analysis of cooling including forming → forming forming forming • Modeling of transfer from the 1.0 224 225 1.0 0.96 - Top Relative thickness (-) 7 7 9 0 8 8 0 8 8 0 208 Relative thickness (-) 200 175 150 125 oven to the mold and forming Mid 0.84 u 192 ບົ Bottom 0.72 5 Both-sided pressurized mold ر ب 128 عد 112 Interature 176 0.6 0.60 contact is modeled during forming 0.48 වි ة 0.36 Processing window and required egree 0.24 0.2 dwell time determined through 100 96 0.12 0.0 80 0.0 crystallization 10 20 5 10 15 20 25 0 10 20 0 0 Time (s) Time (s) Time (s)

14

Virtual design of thermoforming processes

2 Part analysis & tool definition

Step 2.1: Tip angle determination

• Part rotation by the tip angle enables the reduction of thrust forces during forming

Step 2.3: Derivation of the tool surfaces

• Forming simulation models the tools as rigid surfaces

CAD data of the part as-molded

• CAD for the part as-molded is created to derive the surfaces of the tools

Discretized tool data derived upon the part as-molded

Step 2.2: Determination of the center of gravity

- The mounting position of the mold in the press is an essential information for the shop floor
- The center of gravity as well as the center of thrust moments is evaluated

Step 2.4: Definition of the laminate loading plane

The laminate loading plane is optimized to reduce the required deep drawing length

Virtual design of thermoforming processes

3 Forming simulation & optimization

Step 3.1: Model setup with SimuDrape

- SimuDrape is used for fully automatized model setup
- Emphasis on accurate gripper modeling including its kinematics through so-called translator elements

Step 3.2: Model tests with reduced complexity

- Model tests with a reduced number of plies and coarse discretization
- Validation of the model setup
- Short lead time for first analysis of manufacturability

Step 3.3: Optimization of manufacturability

- Manufacturing without defects requires that no wrinkles and localized shearing occurs
- The results of forming simulation are analyzed layer-by-layer to investigate the manufacturing quality
- Forming simulation enables to vary and optimize virtually:
 - Geometry of the part and the part as-molded
 - Gripping (location, force, kinematics)
 - Forming temperature

Evaluation of manufacturability.

Virtual design of thermoforming processes

3 Forming simulation & optimization

Step 3.4: Tailored blank for near-net shaped forming

Step 3.5: Determination of the maximum mold block size

- The gripper design and the elongation of grippers influences the maximum block size of the mold
- The maximum block size is an essential information for the mold make to ensure manufacturing as designed

SIMUTENCE

Digital Composites Engineering

4 Reporting & closing

Combined results and information for mold manufacturing

• The gained information on part asmolded, gripper positions, and maximum block size is condensed and transferred to the mold maker

Virtual process chain for impact simulation

SIMUTENCE Digital Composites Engineering

Ø Project goals

- Benchmark of existing materials characterization and modeling approaches for a PLA basalt tape
- Creation of a virtual process chain for impact simulation
- Benchmark of a virtual process chain to consider the local fiber orientation in impact simulation

Thermoforming simulation of a seatback structure including a local predraping

Virtual process chain for impact simulation

Fiber orientation prediction

Thermoforming simulation predicts the local fiber orientation layer by layer.

Comparison of predicted and ideal fiber orientation

Significant deviation between the predicted (black) and the ideal (green) fiber orientation in double-curved areas.

The local fiber orientation changes in double-curved areas due to shear-induced fiber rotation.

Virtual process chain for impact simulation

The forming-induced local fiber orientation can significantly influence component failure.

Product design using a virtual process chain

Project goals Ø

- Design of a service hole cover of a lift gate for a pick-up ٠ truck in sandwich construction
- Virtual design of the thermoforming process •
- Virtual validation of load requirements including the • consideration of manufacturing effects

Project partners

TENCE

Diaital Composites Engineering

Thermoforming simulation for service hole cover of a lift gate for a pick-up truck

Product design using a virtual process chain

Part design

- Design of a sandwich part
 - Tape laminate skins
 - Foam core
- Fitting of the designed part into the existing assembly

Forming simulation

- Validation of manufacturability
- Optimization gripper setup considering gripper kinematics
- Prediction of local fiber orientation

Conceptual phase

Finalization phase

Structural analysis (FEA)

- Prediction of the deflection for several load cases
- Analysis of local failure for the skins (Hashin) and the core (compaction stress)

Transfer of fiber orientation

- Mapping of local fiber orientation from forming to structural simulation
- Creation of a composite layup using laminate theory for efficient structural analysis

Focusing on design and structural analyses in conceptual phases for simple parts can be time-efficient.

simple geometries

Opportunities:

- Composites forming simulation enables the virtual validation and optimization of manufacturing already in early product development phases
- A virtual process chain is capable to predict, retain, and consider manufacturing effects in downstream FEA

Challenges:

- A trade-off between educated decisions and highfidelity simulation is crucial for efficiency
- Standardized interfaces, simulation setups, and reporting are essential to achieve short lead times
- Efficient simulation and materials characterization approaches are required in the industrial context
- Consideration of materials characterization in time and • budget planning is essential for the successfully establishing digital product development

23

SIMUTENCE

Digital Composites Engineering

Opportunities and Challenges of Composites Forming Simulation for Digital Product Development

SPE ACCE 2023

Contact

www.simutence.de info@simutence.de