

A JAMES CROPPER COMPANY DEVELOPMENT AND VALIDATION OF AN EMI ENHANCED SMC FOR BEV APPLICATIONS

Mike Campbell – Technical Fibre Products a James Cropper Company

Adam Halsband – Forward Engineering, North America

September 7th 2023

Outline

- Project Introduction
- HVBE Technical Requirements
- EMI Basics
- Competitive Analysis
- Project Overview Problem, test methods, results

/ARD

COMPOSITES

AUTOMOTIVE COMPO

CONFEREN

• Summary of Findings

TECHNICAL FIBRE PRODUCTS

• What's Next?

INTRODUCTION

TECHNICAL FIBRE PRODUCTS

FORWARD ENGINEERING spe a

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION COMPOSITES & THE KEYTO EV

INTRODUCTION

Objectives

- Determine potential for Nonwoven as an EMI solution in BEV applications
- Determine Capable Application of Nonwovens into SMC Components
- Evaluate EMI Shielding Effectiveness of Solution for BEV battery enclosure lid
- Validate Solution for Commercial SMC Applications

Collaborating Partners

- IDI Composites
- INEOS
- Forward Engineering
- Technical Fibre Products

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION COMPOSITES & THE KEYTO EV

WHAT IS A NONWOVEN?

- Synonyms: veil, scrim, mat, paper
- Made with a wet-laid process similar to pulp paper
- Discontinuous fiber and binder
- Pourous
- Typical Fibers: glass, polyester, aramid, carbon, metal-coated carbon
- Typical Binders: Poly vinyl alcohol, polyester, styrene acrylic

SHIELDING EFFECTIVENESS IS FUNCTION OF

- Conductivity of the fiber
- Fiber distribution
- Areal weight and # of layers of veil

	Metals		Carbon Powders & Fibers			Shielding Composites			Conductive Composites			Static Dissipative Composites			Anti-Static Composites			Base Polymers				
Ω/sq	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	10 ⁻¹	1	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10 ⁹	10 ¹⁰	10 ¹¹	10 ¹²	10 ¹³	10 ¹⁴	10 ¹⁵	10 ¹⁶

TFPTUNING FOR EMI SHIELDING IN FRP

- Areal weight: 2 200 g/sm
- Veil thickness: 30 µm 6 mm
- Fiber length: 3 25 mm
- Fiber diameter: 6 25 µm
- Coatings: Ni & Cu
- Veil Production: Binder, Loading, Other

COMPOSITES 4

HEKEY

WHAT IS SMC?

tfp

BEV HV BATTERY ENCLOSURE

HV Battery Enclosure/Pack Terminology

- Enclosure Structure which support and protects the cells
- Modules House the energy storage cells
- **Cells** Capture chemistry, anodes & cathodes which store/release energy

COMPOSITES

- Thermal Management Heat Exchange to Cool/Heat Cells
- HV Bus Conductors between modules, in/out of pack
- BMS Battery Management System

AUTOMOTIVE COMPOSITES

CONFERENCE & EX

BEV HV PACK

Enclosure Structure

- Cover
- Tray
- Cross Members
- Longitudinals
- Headers

Crash Strength

Impact

Compression Strength

MAIN REQUIREMENTS FOR HV BATTERY ENCLOSURE

MULTI-MATERIAL & TECHNOLOGY DESIGN TOOLBOX

•	Cover, Tray Panel	
	✓ Al-sheet	 ✓ FRP thermoset (NCF/WF) ✓ FRP arrespects (NCF (M/F))
	 ✓ SI-sheet ✓ SMC 	 ✓ FRIP organosneets (NCF/WF) ✓
-	Cross-member, Longitudinal /	Lateral Beam
	✓ Al-extrusion✓ St-profiles (roll-formed/welded)	 ✓ FRP Pultrusion / Pullwinding ✓
•	Node	
	✓ Al-cast	 Injection molding
	✓ SMC	 ✓ Additive manufacturing (metal / FRP)
•	Energy Absorber	
	✓ Al-extrusion	✓ Compressible cores
	 Injection Molding 	(Toams, honeycomb)
	✓ FRP Sandwich	✓ Organosheet Overmolding
	(thermoset / thermoplastic)	✓ Thermoset Overmolding √ ⁽⁶⁵)
1	SDE AUTOMOTIVE COMPOSITES	COMPOSITES & THE KEYTOEV

and a set

BASICS OF EMC

Description

- Electromagnetic Compatibility (EMC) consists of...
 - EME \rightarrow ability to operate without interfering with other devices
 - EMI \rightarrow ability to operate within a specified electromagnetic environment
- Dispersion of electromagnetic fields
 - By radiation ("antenna principle")
 - By conduction
- Findings for automotive application
 - EMC-shielding needed to prevent...
 - Disturbing influences from HV-system on LV-system (e.g. BUS-system with sensors and actors)
 - Disturbing influences from external emitting devices on HV-system
 - EMC-shielding to be applied on global structure
 - EMC-shielding needed for enclosure as well as harness
 - Especially high frequency AC-devices/harness to be shielded

radiated

conducted

conducted

radiated

BASICS OF EMI

- Total shield effectiveness curve is result of reflection and absorption
- Calculation method:
 - Absorption
 - ightarrow skin depth
 - Reflection

$$\delta = \sqrt{\frac{2}{\mu\omega\sigma}}$$
$$R = 20\log_{10}^{\left|\frac{(z_0 + z_1)^2}{4z_0 z_1}\right|}$$

 $A = 20 \log_{10}^{e\frac{t}{\delta}}$

- $Z_0 \triangleq$ wave impedance of air
- $Z_1 \triangleq$ wave impedance of material
- t riangleq t thickness of metal sheet
- μ \triangleq relative permeability
- $\omega \triangleq$ angular frequency of current (2 $\pi \times f$)
- σ \triangleq electrical conductivity

COMPOSITES 4

- Conclusions
 - Electromagnetic shielding at (relevant) higher frequencies can be improved by
 - ✓ lowering specific resistance
 - ✓ thickening (conductive) material

CONFERENCE & EXH

Material / design to be adapted accordingly

AUTOMOTIVE COMPOSITES

EMC-CHALLENGE FOR GFRP COMPOSITE DESIGN

Material	Ω*m (@20°C)	+
Copper	0.0175*10 ⁻⁶	s
Aluminium	0.0270*10 ⁻⁶	ene
Iron	0.1000*10 ⁻⁶	priat
Stainless Steel	0.2080*10 ⁻⁶	bro
Carbon Fibre (HT)	0.01-0.1	C-ap
E-Glas Fibre	10 ¹⁷	
Aramid Fibre (HM)	10 ¹⁷	_

[Roechling Automotive]

ORWARD

material's ohmic specific resistance

Al-foil applied on cover made of GF-SMC (BMW 2 series Active Tourer PHEV)

TECHNICAL FIBRE PRODUCTS

Starting point

- Glass fibre is electrically isolating
- Consequence
 - Inappropriate shielding of electromagnetic fields with enclosure components made of GFRP / GFRTP
- Approach
 - Application of EMI countermeasures
 - \rightarrow targeted attributes for feature selection

AUTOMOTIVE COMPOSITES

CONFERENCE & EXHIBITION

- ✓ Economic
- ✓ Ease of Processing
- ✓ Space efficient/Packaging
- ✓ Lightweight

COMPOSITES & THE KEY TO EV

SMC EMI COUNTERMEASURES | BENCHMARK ANALYSIS

#1 Compounding	#2 Part Fo	2 rming			#3 Post-Process		#4 #5 #6 Assembly Use-Case End of Life
 Semi-Finished Part 	DrapabilityGeometry Co	omplexit	ïУ	SurPre	face preparation forming + Joining	5	 Robustness during part mounting Operation robustness Performance / Functionality Material separation Recycling
EMI Countermeasures	Process		Entra	ance Ba	arrier Step #		Comments Relative Added Part Costs* [%]
TEP Veil integrated	Option A1	1	2	3	4 5	6	slight increase of mechanical properties + 1
Veil (overmolded)	Option B1	Ŷ	Ş				mtrl handling, high risk of veil rupture during overmolding
Metal Foil (post-joined)	Option B3			\$\$\$			current "state of the art", geometry/packaging constraints +
Metal Foil (overmolded)	Option B		\$\$				limited evidence for series production, geometry restrictions +
Metal Mesh	Option B2		\$\$\$				geometry/preform, potential to improve impact strength +
Metal Coating	Option C2			\$\$\$			dedicated coating line, labor, environ. impact, handling, low robustness +
Carbon Black	Option A3	\$\$					significant decrease of mechanical properties +
CF Chopped	Option A2	\$					uniform distribution challenging, slight incr. mech. prop's
CF Biaxial	Option B2		\$\$				formability/drapability, improved mechanical properties + 4
*) Reference ≙ GF-SMC cover (<i>geometry see other <u>slide</u></i>) <u>Legend</u> : @ 10.000-100.000 units/year							benefitial low impact med impact high impact \$-\$\$\$ cost effort
							Technology Readiness Level

COMPOSITES

TFP EMI ENHANCED SMC DEVELOPMENT & VALIDATION

AUTOMOTIVE COMP

TECHNICAL FIBRE PRODUCTS

- Manufacturability of Composites Panels incorporating TFP Functional Veils
- Plaque Level evaluation of Shielding Effectiveness Performance of TFP Veils in Composite Applications (TP, TS)
- Manufacturability of Composites Components incorporating TFP Functional Veils
- Component Level evaluation of Shielding Effectiveness Performance of TFP Veils in Composite Applications (TP, TS)

COMPOSITES

MANUFACTURABILITY

AUTOMOTIVE COMPOSITES COMPOSITES THE KEYTOEV

TFP EMI ENHANCED SMC PRODUCTION AT INEOS COMPOSITES

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION

COMPOSITES & THE KEYTOEV

TFP EMI ENHANCED SMC MOLDING AT INEOS COMPOSITES

COMPOSITES 7 THE KEY

TOEV

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION

MOLDED COMPONENT MANUFACTURABILITY

COMPOSITES & THE KEYTO EV

INTEGRATION OF TFP FUNCTIONAL NONWOVEN

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION COMPOSITES & THE KEY TO EV

TESTING AND VALIDATION METHODS

TECHNICAL FIBRE PRODUCTS

Sample Level

AUTOMOTIVE COMPOSITES

CONFERENCE & EXH

- For material comparison potentially used in housing of electric devices
- ASTM D4935 Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials
- IEEE 299 Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures
- Component/Subsystem Level
 - For final design validation of electric devices in automotive application
 - "CISPR 25" as a common test standard
 - Conducted in chambers with absorbing elements

THEKE

Setup on table or vehicle basis

COMPOSITES 4

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION

COMPOSITES & THE KEYTO EV

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION COMPOSITES & THE KEY TO EV

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION COMPOSITES / THE KEYTO EV

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION COMPOSITES

TOEV

RESULTS – FIRST ROUND

HEKEV

TOEV

Shielding Effectiveness

PROXY INCUMBENT APPROACH – METAL FOIL

PROXY INCUMBENT APPROACH – METAL FOIL

2nd ROUND | EQUAL OR BETTER THAN INCUMBENT

TECHNICAL FIBRE PRODUCTS

SUMMARY OF FINDINGS

TECHNICAL FIBRE PRODUCT

- TFP nonwoven performs equal to or better than aluminum foil in the testing conducted
- Grounding the metallic material does not significantly affect the shielding effectiveness
- Understanding the system requirements, is critical to choosing the right materials
- Polymeric materials are a potential solution for a BEV HV battery enclosure

WHAT IS NEXT?

TECHNICAL FIBRE PRODUCT

- TFP EMI ENHANCED SMC CAN BE COST EFFECTIVE SOLUTION FOR EMC IN HVBE
- TFP EMI ENHANCED SMC OFFERS THE FOLLOWING BENEFITS

OEM – reduce cost/complexity

Molders – more comp against metallic

Compounders – SMC into larger market share, with more value

• THE TEAM HAS COMPLETED INTENSIVE FRONT END DEVELOPMENT WORK TO DEMONSTRATE THE PLAUSABILITY OF THIS TECHNOLOGY AND WELCOMES THE CHALLENGE OF VALIDATING THE SOLUTION AT SCALE

A JAMES CROPPER COMPANY Thank you!

AUTOMOTIVE COMPOSITES

CONFERENCE & EXHIB

Contact Information:

Forward Engineering NA LLC Adam Halsband +1 (248) 838-8772 halsband@forward-engineering.com

Technical Fibre Products **Michael Campbell** +1 (518) 612-0107 mike campbell@tfn-ame

HEKE

mike.campbell@tfp-americas.com

COMPOSITES

