Designing for Sustainable Content and Performance in Phenolic Sheet Molding Compound

Hugh MacDowell

Teijin Automotive Technologies

Polymer Composites for Electric Vehicle (EV) Applications

- EV battery enclosures are an excellent application for polymer composites
 - Weight reduction compared to metallics
 - Electrically insulating
 - Enhanced thermal runaway protection
- Many existing polymer composites are highly filled to achieve flame resistance (FR)
 - Lower mechanical properties
 - Increased density
- Phenolic Sheet Molding Compound (SMC) does not require additional FR additives
 - Higher mechanical properties
 - Great opportunity to increase sustainable content in automotive composites

Control Phenolic SMC Properties

- A version of phenolic SMC was developed with 10% sustainable content utilizing a recycled filler
- The Control Phenolic SMC properties in this study are as follows:

Tensile Strength	Young's Modulus	Flexural Strength	Flexural Modulus	Glass Content
(MPa)	(GPa)	(MPa)	(GPa)	(%)
125	21	265	20	55

Opportunities to Increase Sustainable Content in Phenolic SMC

 This study investigated maximizing sustainability of resin to increase the overall sustainable content of Phenolic SMC from 10% to 31%

PHENOLIC SMC WT.% COMPOSITION

Experimentation Methods

- Rheology Flow and Cure Analysis
 - Dynamic Temperature Oscillatory Evaluation, 10° C/min
 - 25 mm parallel plates, 0.5 mm gap
 - 1 Hz frequency, 0.1% strain rate
- 30 Minute Burn Char Strength
 - 30 minute vertical burn with UL94-5VA flame
 - Residual char strength determined by 16 mm diameter probe

- Mechanical Evaluation
 - Tensile ISO 827
 - Flex ISO 178
- Glass Content Determination
 - Sample burn-off at 600° C for 3 hours
 - Glass fiber washed and dried

30 Minute Burn Char Strength

UL94-5VA Flame

30 Minute Vertical Burn

Char Strength Test

30 Minute Burn Char Strength

- Both resins achieved the target of 200 N char strength
- The control resin seemed to perform better than the sustainable resin
 - This may be optimized with sustainable resin synthesis optimization

Description	Thickness (mm)	Char Strength
Control Phenolic SMC	3.05	612.3
Sustainable Phenolic SMC	3.05	249.7

Rheology Results – Minimum Viscosity

- Control and Sustainable resins have near identical melt behavior (112° C & 113° C)
- Difference in room temp. viscosity due to minor maturation differences

Cure Viscosity of Control vs. Sustainable Phenolic SMC

Rheology Results – Gel Point

Identical modulus crossover points, indicating similar rate of cure (144° C)

Mechanical Results – Tensile

 No statistical difference in tensile performance between Control and Sustainable resins

Resin	Tensile Strength (MPa)	Young's Modulus (GPa)
Control	125	21
Sustainable	119	19.1

TEIJIN TEIJIN AUTOMOTIVE TECHNOLOGIES

Mechanical Results – Flexural

 No statistical difference in flexural performance between Control and Sustainable resins

Resin	Flexural Strength (MPa)	Flexural Modulus (GPa)
Control	265	20
Sustainable	260	19.2

TEIJIN TEIJIN AUTOMOTIVE TECHNOLOGIES

Glass Content Analysis

- No statistical difference in glass contents between the control and sustainable SMCs
- However, the sustainable SMC was found to be slightly lower in fiber content

Description	Glass Content (%wt.)	Standard Deviation
Control Phenolic SMC	55.95	1.19
Sustainable Phenolic SMC	54.70	0.42

Conclusions

- The sustainable content of phenolic SMC was increased from 10% to 31% by utilizing a highly sustainable resin
- Processing, cure speed, and mechanical performance of sustainable resin was identical to control
- A slight decrease in FR properties observed in the sustainable resin
 - May be addressed with resin synthesis optimization
- Now possible to have composite battery enclosures with over 30% sustainable content

Special Thanks

- Austin Pakkala
 - Teijin Automotive Technologies R&D
 - Auburn Hills, MI

TEIJIN

TEIJIN AUTOMOTIVE TECHNOLOGIES

- Frank Ludvik
 - Senior Sales Specialist Bakelite Synthetics
- Bakelite Synthetics R&D
 - Dexter Johnson
 - Ramji Srinivasan
 - Alex Muzzillo

