Manufacture High Throughput Sustainable Automotive Parts Using Spray Transfer Molding (STM) Technology

Joint development
Elias Shakour, Ph.D. BASF Corporation
Alper Kiziltas Ph.D. Ford Motor Company
Mihaela Banu, Ph.D. University of Michigan
Xhulja Biraku, M.Eng. University of Michigan
Outline

• Concept of Lightweight Sandwich Materials
• Spray Transfer Molding (STM) Process
• Sustainable Polyurethane (PU) Application
• Natural Fiber- Jute, Flax, and Bamboo fibers
• Natural Reinforcements: Basalt
• Test results
• Parts made
• Conclusions
STM – Polyurethane Honeycomb Process
STM PU – Automotive Benchmark
Sustainable solution
Elastoflex® 28690 – Accelerator Sustainable Polyurethane

- 15-18% Bio renewable content
- Low demold time
- Non-sag formulation
- Good open time to make large parts
- Compatible with multiple reinforcement fibers
- Compression time can be reduced up to 40sec in the tool
Standard PU Vs Sustainable PU

15 mm paper core height on 450 (grams/m²) chopped random glass

Mechanical performance of sustainable PU is slightly higher than commercial PU
Why natural fiber for Structural approach?

- Renewable Resource
- Growth Rate
- Superior Mechanical Behavior (Particularly Flexural)
- Low Density
- LCA benefit
Material Preparation
Plaque Parts

Preparing the material

Plaque made with half size include basalt net
Adding Basalt net increases the strength 38%, stiffness 28% and weight 4%
Flexural testing results on Honeycomb

- Jute has higher ductility
 - At failure, it has softer failure than brittle Glass fiber
- Bamboo fibers increases strength

- Bamboo (35% 4" random)
- Jute (70% Jute, 30 polyester)
Flexural Bending on a Part Compared to GF

- Bamboo part matched the performance of GF
- Fracture of GF was louder than the bamboo
- The fracture occurred on the same location for both materials
STM-PU with natural fiber did not uptake water
Life Cycle Assessment - Benchmarked to PP on a part

• Polypropylene benchmark
 ▪ 1 kg part (70% PP + 30% Glass fiber)
 ▪ 8% scrap rate
 ▪ Benchmark 1 assumes molding energy of 6 MJ / kg
 ▪ Benchmark 2 assumes Plastics Europe data for injection molded part (2005)

• Polyurethane System
 ▪ PU System is Elastoflex® 28690
 ▪ 150 gsm jute/polyester sheets (3 layers; 450 gsm) (jute imported from Asia / Bangladesh; rain fed)
 ▪ 3% scrap rate
 ▪ Energy requirement estimate of 3.6 MJ / part
 ▪ Final part weight (measured): 0.726 kg (mass) 0.5005 m² (area)
Life Cycle Assessment

Life Cycle Assessment results
Overall Environmental Impact, including USE Phase (light weighting)
Parts Production
Auto Parts Made

Door panel
- In mold coating with grain look
- 80% sustainable material (Jute, Honeycomb)

Underbody panel
- Reinforced with basalt
- 80% sustainable material (Jute and Flax)
Auto Parts Made continued

Center Console
- Bamboo and Flax
- 3D inserts inside for joining
- 40% weight reduction vs control

Honeycomb loadfloor
- Jute and Flax
- 70-80% sustainable
Conclusions

• STM PU allows manufacturing of complex shapes

• STM PU has low cycle time for high throughput applications

• Identified Elastoflex® 28690 as an accelerator PU
 ▪ Works well with all natural fibers

• Natural Fiber can be a good replacement for semi structural application

• Sustainable PU has good LCA results
Thank You