MACHINE LEARNING APPROACH FOR PREDICTION OF FIBER ORIENTATION DISTRIBUTION IN MOLDED COMPOSITES

Richard A. Larson1,*, Jiang Li1, Sergey G. Kravchenko2, Oleksandr G. Kravchenko1

1Old Dominion University, Department of Mechanical and Aerospace Engineering, Norfolk, VA, 23529, USA
2University of British Columbia, Department of Materials Engineering, Vancouver, BC, Canada

21st Annual Automotive Composites Conference & Exhibition
Novi, MI, Sept. 8-10 2021
Digital Twins to Advance High-Rate Manufacturing Methods

- Compression molding of discontinuous fiber forms, such as “chopped prepregs” is a cost efficient manufacturing method of complex shaped geometries.

- Development of material & process technologies aimed at enabling high-volume production of thermoplastic composites requires:
 - Fundamental understanding of process-structure-property-performance relationships:
 - Origin of mechanical properties
 - Mechanisms of progressive damage accumulation
 - Integrated design solutions for manufacturing & performance:
 - Variability in the manufacturing process & performance characteristics
 - Anticipation of failure modes
PPMC Material System

- Prepreg platelets contain carbon fiber reinforced with polymer
- Prepreg is a transversely isotropic material
- PPMC fills a niche – it allows greater fiber volume fraction and fiber length, yet is formable into geometrically complex parts
- PPMC parts require time intensive inspection due to their stochastic local orientation states
- PPMC are beneficial as they are strong, stiff and light, and can be produced via high-throughput manufacturing processes such as compression molding
Varying Scales of molded platelet Applications

Example (Aerospace)
Compression Molded Parts

Liftgate Inner (Ford):
Dow’s Vorafuse™

Thermoplastic Blocker Door
Motivation

• Establishing rapid non-destructive evaluation of the fiber orientation distribution (FOD):
 • Identification of the faulty components, areas of concern, inconsistencies in the resulting FOD
 • Development of the digital thread process by identifying the unique manufacturing signature embedded into the components meso-structure
 • Inspection techniques that readily allow structural analysis
Fiber Distribution

- Individual platelet boundaries visible in grey image
- Surface fiber orientation is not representative of the fiber orientation throughout the thickness
PPMC Plate Simulation

• PPMC virtual plate, subdomains shown in different colors (a)

• Fiber orientation distribution tensor (FOD) described by Advani and Tucker is plotted over the plate (c)
 • Only the a_{11} and a_{12} terms are required to describe a PPMC with a 2D random material orientation state

• The probability density of a_{11} and a_{12} are shown (d)
PPMC Non-Uniform Deformation Fields

- Due to stochastically varying nature intrinsic to PPMC, non-uniform deformation fields will develop as a result of temperature change.
- Local strain fields of the plate are also non-uniform.
Problem Solution

- Digimat software is used to construct 2D random PPMC morphologies in a 5” x 5” plate
- ABAQUS software is used to perform finite element analysis (FEA) uniform temperature differential simulation
- Entire process is automated via python scripting
- 2000 simulations were performed to generate the dataset for the study
- Each simulation had 25 smaller 32x32 pixel patches extracted so as to increase the size of the dataset (Figure 3)
• U-Nets in this study were evaluated with root mean squared error (RMSE) and mean absolute error (MAE) loss functions
Dataset

- Smaller patches were extracted from each plate and used for U-Net training
- Different patch sizes were used during training, and corresponding U-Net performance was evaluated
Datasets Used in Study

<table>
<thead>
<tr>
<th>Patch Size (pixels)</th>
<th>32²</th>
<th>80²</th>
<th>160²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train X dataset shape (pixels)</td>
<td>(35000,32,32,6)</td>
<td>(5600,80,80,6)</td>
<td>(1400,160,160,6)</td>
</tr>
<tr>
<td>Train Y dataset shape (pixels)</td>
<td>(35000,32,32,2)</td>
<td>(5600,80,80,2)</td>
<td>(1400,160,160,2)</td>
</tr>
<tr>
<td>Validation X dataset shape (pixels)</td>
<td>(7500,32,32,6)</td>
<td>(1200,80,80,6)</td>
<td>(300,160,160,6)</td>
</tr>
<tr>
<td>Validation Y dataset shape (pixels)</td>
<td>(7500,32,2)</td>
<td>(1200,80,80,2)</td>
<td>(300,160,160,2)</td>
</tr>
<tr>
<td>Test X dataset shape (pixels)</td>
<td>(7500,32,32,6)</td>
<td>(1200,80,80,6)</td>
<td>(300,160,160,6)</td>
</tr>
<tr>
<td>Test Y dataset shape (pixels)</td>
<td>(7500,32,32,2)</td>
<td>(1200,80,80,2)</td>
<td>(300,160,160,2)</td>
</tr>
</tbody>
</table>
• Majority of model learning occurs within first 1000 epochs
• Model trained with 32x32 input patches and RMSE achieved lowest test dataset loss of 0.066
Results
Results

• Model captures trend, yet still oversmoothed
Results

• Model can detect embedded region with global $a_{11c} = 0.75$

• The model detects this patch yet underpredicts the high a_{11} values observed

• This is expected as higher a_{11} values are less frequent in the training dataset
Conclusions

• The trained U-Net can accurately predict the local through-the-thickness FOD terms with 6.6% error
• This error is attributed to over-smoothing of the FOD term predictions
• The U-Net overpredicts values near the mean dataset value, but underpredicts less commonly occurring values
• The U-Net can accurately detect regions of fiber bias
• Richard Larson is acknowledging the support of the NSF Scholarship in STEM (Award # 1833896).
• The authors acknowledge the support of the Batten College of Engineering Technology Multidisciplinary Research Seed Grant
<table>
<thead>
<tr>
<th>Loss metric</th>
<th>Patch Size (pixels2)</th>
<th>Patches extracted per plate</th>
<th>Epochs</th>
<th>Epoch of saved parameters</th>
<th>Training Time (hrs)</th>
<th>MAE (training)</th>
<th>RMSE (training)</th>
<th>MAE (test)</th>
<th>RMSE (test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>322</td>
<td>25</td>
<td>4000</td>
<td>3226</td>
<td>16.18</td>
<td>0.065</td>
<td>0.082</td>
<td>0.066</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>802</td>
<td>4</td>
<td>3000</td>
<td>1997</td>
<td>12.30</td>
<td>0.057</td>
<td>0.072</td>
<td>0.069</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>1602</td>
<td>1</td>
<td>3000</td>
<td>1214</td>
<td>20.04</td>
<td>0.065</td>
<td>0.065</td>
<td>0.069</td>
<td>0.086</td>
</tr>
<tr>
<td>MAE</td>
<td>322</td>
<td>25</td>
<td>4000</td>
<td>2723</td>
<td>16.43</td>
<td>0.066</td>
<td>0.083</td>
<td>0.067</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>802</td>
<td>4</td>
<td>3000</td>
<td>779</td>
<td>12.29</td>
<td>0.064</td>
<td>0.080</td>
<td>0.070</td>
<td>0.088</td>
</tr>
<tr>
<td></td>
<td>1602</td>
<td>1</td>
<td>3000</td>
<td>1297</td>
<td>19.97</td>
<td>0.051</td>
<td>0.065</td>
<td>0.069</td>
<td>0.086</td>
</tr>
</tbody>
</table>