A New Approach to Lightweighting
Sustainable Nonwoven Composites in the Automotive Industry

Ziniu Yu, PhD
Nov 3rd, 2021

2021 Automotive Composites Conference & Exhibition
Agenda

- Automotive Innovation driving demand for new materials
- Benefits aligned with needs
- Formulation and Production
- Properties
- Carbon Footprint
- Customizability
Why nonwoven composites in automotive?

Overall innovation focused on Electric Vehicles (EVs)
 • All-new design of EV means qualifying all-new materials
 • New needs and requirements (different structures, components, noises/vibrations, etc)

New requirements
 • Focus on improving fuel efficiency
 • Improving Carbon footprint
 • Use of renewable materials
 • Flexibility in processing conditions
 • Customizable properties (color, flame retardant)

Automotive applications

Current technology (PP, PE, other thermoplastics) doesn’t meet new automotive requirements
BASF Acrodur resin for nonwoven composites

Fiber bonding technology enables

• Waterbased emulsion or solution is easy to handle and environmentally friendly
• Lightweighting at comparable rigidity / stiffness performance
• Higher performance at the same weight vs thermoplastics
• Increase thermo-mechanical stability (up to 220 °C)
• Increase renewable content (75-85%)
• Minimize emissions (FOG, VOC)
• Create new design opportunities
Acrodur resin compatible with various natural nonwoven

Maximizing the physical properties of the final product depends on enhancing the interfacial adhesion between the fiber surface and the polymer matrix

BASF Acrodur resins have more flexibility on nonwoven selections than a hydrophobic thermoplastic.

Acrodur has strong interfacial interactions with a wide variety of fiber types

- Bast type fibers (Hemp, Jute, Kenaf, Flax)
- Cotton fibers (Shoddy, recycled Denim)
- Grass fibers (Bamboo)
- Wood fibers
- Synthetic fibers (Glass, PET)
- Carbon Fibers
- Hybrids

BASF binders have enhanced adhesion to natural fibers due to Hydrogen bonding
Versatility of Acrodur resin

- WB Emulsion or Solution with Zero VOC capability
- Formaldehyde-free with less health and safety concern

- Range of viscosity 300 – 2500 cps
- Easy to handle, non-flammable
- Easy to incorporate additives, dilute

Acrodur® solutions
Conform to requirements for high thermal resistance.

Acrodur® emulsions
Conform to requirements for high thermal resistance and flexibility.
Acrodur available as thermoplastic or thermoset

Thermoset Binder Mechanical Performance

Acrodur can be molded and operated similar to NF/PP, GF/PP nonwovens
Curing mechanism of thermoset Acrodur

Acrodur dispersion
- Core shell structure
- Good wet-out at fiber surface

Film formation
- Water phase evaporates
- Two-phase thermoplastic film at room temperature

Cured film/ network
- Heat causes "shell" phase to crosslink
Multiple application processes for adding Acrodur to Nonwoven

Applications – Fiber Mat Impregnation

- Bath
- Spray
- Foam

Foam Impregnation
- BASF Resin Density ~ 1000 – 1200 g/L
- Foam Density for Impregnation: 100 – 250 g/L
- Lower density ---- More area

Thermosetting - Crosslinking into cured state (irreversible)

Thermal crosslinking at 130 °C
Processing of Nonwoven Composites with Acrodur

Thermoset

- Raw materials
 - Bast fibers + Acrodur
 - Wood fibers + Acrodur

- Processing
 - Hot Press

- Composites
 - Established process
 - Outstanding thermo-mechanical stability
Processing of Nonwoven Composites with Acrodur

Thermoplastic

<table>
<thead>
<tr>
<th>Raw materials</th>
<th>Processing</th>
<th>Composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bast fibers</td>
<td>Pre Heat</td>
<td>Fits in established cold mould process</td>
</tr>
<tr>
<td>Wood fibers</td>
<td>Cold Press</td>
<td>High thermo-mechanical stability</td>
</tr>
<tr>
<td>Acrodur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrodur</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BASF ACRODUR resins

10/21/2021
Processing of Nonwoven Composites with Acrodur
Thermoforming with Back Injection

<table>
<thead>
<tr>
<th>Raw materials</th>
<th>Processing</th>
<th>Composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bast fibers</td>
<td>Prepreg</td>
<td>Efficient process of back injection moulding</td>
</tr>
<tr>
<td>Wood fibers</td>
<td>Thermoplastic</td>
<td>Increased light weight potential</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High thermo-mechanical stability</td>
</tr>
</tbody>
</table>

BASF ACRODUR resins
Properties at a Glance

Flexural Properties

- Tested at room temperature
- Composites with Acrodur and control samples have similar NF or GF content
- Acrodur content in the composites is ~ 30%
- Flexural Properties were evaluated by SAE J949

<table>
<thead>
<tr>
<th>Weight (GSM)</th>
<th>Thermoset NF</th>
<th>Thermoset GF</th>
<th>Thermoset NF/PP</th>
<th>Thermoplastic NF</th>
<th>PP/PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>720</td>
<td>720</td>
<td>720</td>
<td>910</td>
<td>1000</td>
<td>1500</td>
</tr>
<tr>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td></td>
</tr>
</tbody>
</table>

Flex is 10% higher at lower weights, and 10x PP/PE composites
Properties at a Glance

Tensile Properties

- Tested at room temperature
- Composites with Acrodur and control samples have similar NF or GF content
- Tensile Properties were evaluated by ASTM D1037

Lighter samples didn’t demonstrate significant differences in resin
Heavier samples showed 60% increase in tensile strength
Properties at a Glance

Thermal Stability

- Acrodur has higher tensile strength at a given weight
- PP samples lost 50% of tensile strength at 80°C
- Flex strength of PP samples decreased 30% for lighter samples at 80°C
- Heavier PP/PE samples had <3 MPa, and dropped to <1 MPa at 80°C
- Acrodur is more than 10x the flex strength of PP/PE samples
Life Cycle Assessment - Study Summary – Impact to Carbon Footprint along the Lifecycle

Acrodur/NF Analysis
- 60% Jute fiber from Bangladesh, 40% Acrodur 3515 from Germany
- Manufacturing data from Tier 1 partners
- Final part weights: 980 gsm, 1120 gsm, 1400 gsm

Polypropylene benchmark
- 70% PP, 30% glass fiber
Two manufacturing efficiencies separated into I and II
Life Cycle Assessment Results
Carbon Footprint, including USE phase

>50% reduction in Carbon Footprint
Extensive Details along entire process – raw materials, production stages, in use

<table>
<thead>
<tr>
<th>Polypropylene / GF (benchmark)</th>
<th>Polypropylene / GF (benchmark)</th>
<th>980 gsm</th>
<th>1120 gsm</th>
<th>1400 gsm</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% GF, 70% PP</td>
<td>40% ACRODUR, 60% Jute</td>
<td>25 kg CO₂ eq/part</td>
<td>16 kg CO₂ eq/part</td>
<td>11 kg CO₂ eq/part</td>
</tr>
</tbody>
</table>
Flame retardants can be added in the Acrodur formulation to pass critical automotive flame resistance tests, such as FMVSS 302.

Antimicrobial additives can be added in the Acrodur formulation to pass ASTM G21.
Ability to customize color for interior A surfaces

Pigment can be added to Acrodur formulations

No need to color after pressing
Summary

Light-weighting: 20-60% lighter than polypropylene at same mechanical performance

Sustainable materials: up to 75% renewable content with natural fibers

No solvents and no added formaldehyde

Thermoset and Thermoplastic binders available for different molding process

Customize performance and aesthetic features through formulations
Contact Information

<table>
<thead>
<tr>
<th>Technical Support</th>
<th>Position</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziniu Yu</td>
<td>Technical Specialist</td>
<td>Ziniu.Yu@BASF.com</td>
<td>(313) 920-4806</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commercial Support</th>
<th>Position</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sebastian Grajales</td>
<td>Business Manager</td>
<td>Sebastian.Grajales@BASF.com</td>
<td>(281) 636-1364</td>
</tr>
</tbody>
</table>
While the descriptions, designs, data and information contained herein are presented in good faith and believed to be accurate, they are provided for guidance only. Because many factors may affect processing or application/use, BASF recommends that the reader make tests to determine the suitability of a product for a particular purpose prior to use. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH, OR THAT THE PRODUCTS, DESCRIPTIONS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. In no case shall the descriptions, information, data or designs provided be considered a part of BASF’s terms and conditions of sale. Further, the descriptions, designs, data, and information furnished by BASF hereunder are given gratis and BASF assumes no obligation or liability for the descriptions, designs, data or information given or results obtained all such being given and accepted at the reader’s risk.

© BASF Corporation, 2021
Moldability

Ability to handle different shapes, draws, bends