One Step Hybrid Molding Process - A Cost Effective Manufacturing Technique for Composite Parts

Pal Swaminathan
What kind of manufacturing process will help me to target a variety of automotive parts?

What does it take to produce composite parts in mass production???

What will be my capital investment?

There are so many manufacturing processes in the market - which one I should choose?
Equation for a successful mass production in automotive industry

Material
- availability for mass production

+ Process
 - feasibility
 - reliability
 - cycle time

= Successful mass production
Tepex® a woven thermoplastic composite laminate

- Continuous-fiber-reinforced sheets in thermoplastic polymer matrix
- Reinforcement is a fabric or continuous fiber made of glass, carbon, carbon + glass
- Sold as semi-finished sheets - Material is fully impregnated and consolidated
- Parts can be made by thermoforming or one step hybrid molding process
- Sheet thickness as low as 0.5mm and up to 6.0mm
- Standard polymer matrixes are PA6, PA66, PP, TPU and PC
Continuous production of Tepex® on an advancement of the Double Belt Press

Polymer Impregnation + consolidation Cutting + Packaging
Textile
Equation for a successful mass production in automotive industry

Material
- availability for mass production

Process
- feasibility
- reliability
- cycle time

= Successful mass production
Processes available for manufacturing composite parts

Thermoset composites
- Hand layup
- Filament winding
- Resin transfer molding (High pressure, Low pressure, vacuum assisted)
- Pultrusion
- Compression molding (SMC)
- Resin film infusion (RFI)

Thermoplastic composites
- Injection molding
- Compression molding
- Automated tape laying
- Automated fiber placement
- Resin Injection Molding (RIM)
- Pultrusion

The list of manufacturing process for composite parts is long!
Processing of thermoset composites

- **Hand layup and Resin film infusion** are attractive for low volume applications with low to medium cost tooling along with medium to high investment in infrastructure.

- **Compression molding** requires medium investment and is suitable for high volume applications with medium to high energy cost and cycle time.

- **Pultrusion** requires medium investment but is constricted to making constant cross-section parts with medium to long cycle times.

- **Filament winding** requires medium investment but is constricted to making cylindrical parts with longer cycle times.

- **HP-RTM** have relatively low cycle time and can be a good candidate for high volume part production but cycle times $>$ 1 min and complexity is higher with thermoset.

Hand layup

- Resin
- Roller
- Laminate
- Mould

Resin film infusion

- Vacuum bag
- Pre-cured resin in sheet form

Compression molding

- Bonding components
- Tactile sense

Pultrusion

- Doctor blade
- Head-off gripping
- Pultruded sections

Filament winding

- Winding supply
- Resin bath

Resin transfer molding

- Polymerization
- Cure

Highlights

- Hand layup and Resin film infusion are attractive for low volume applications with low to medium cost tooling along with medium to high investment in infrastructure.

- Compression molding requires medium investment and is suitable for high volume applications with medium to high energy cost and cycle time.

- Pultrusion requires medium investment but is constricted to making constant cross-section parts with medium to long cycle times.

- Filament winding requires medium investment but is constricted to making cylindrical parts with longer cycle times.

- HP-RTM have relatively low cycle time and can be a good candidate for high volume part production but cycle times $>$ 1 min and complexity is higher with thermoset.
Processing of thermoplastic composites

Injection and compression molding are the most common manufacturing processes in the industry that is suitable for high volume production with relatively low investment.

Automated tape layup is relatively slow process with high investment.

Pultrusion requires medium investment but constricted to making constant cross-section parts with medium to long cycle times.

Filament winding requires medium investment but constricted to making cylindrical parts with longer cycle times.

HP-RTM have relatively low cycle time and can be a good candidate for high volume part production with cycle times>>1min.
Processing properties of Thermoset and Thermoplastic Composites

<table>
<thead>
<tr>
<th>Feature</th>
<th>Thermoset Composites</th>
<th>Thermoplastic Composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass production feasibility</td>
<td>Low to Medium volume</td>
<td>High volume</td>
</tr>
<tr>
<td>Processing time</td>
<td>Medium to Long</td>
<td>Short</td>
</tr>
<tr>
<td>Processing Skill Level</td>
<td>Medium to Difficult</td>
<td>Easy adaptation</td>
</tr>
<tr>
<td>Energy costs</td>
<td>High</td>
<td>Medium to Low</td>
</tr>
<tr>
<td>Design feasibility</td>
<td>Low to Medium</td>
<td>High</td>
</tr>
<tr>
<td>Recycling</td>
<td>Difficult</td>
<td>Possible</td>
</tr>
<tr>
<td>Shelf life</td>
<td>Limited</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Weldability</td>
<td>Not Possible</td>
<td>Possible</td>
</tr>
</tbody>
</table>
Processing of thermoplastic composites

- Injection and compression molding are the most common manufacturing processes in the industry that is suitable for high volume production with relatively low investment.

- Automated tape layup is relatively slow process with high investment.

- Pultrusion requires medium investment but is constricted to making constant cross-section parts with medium to long cycle times.

- Filament winding requires medium investment but is constricted to making cylindrical parts with longer cycle times.

- HP-RTM have relatively low cycle time and can be a good candidate for high volume part production with cycle times $>>1$ min.
Processing steps of Thermoset and Thermoplastic Composites

<table>
<thead>
<tr>
<th>Process of Thermoset composites</th>
<th>Process of Thermoplastic composites</th>
<th># of steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Preg Process</td>
<td>Semi finished sheets precut to the initial blank shape</td>
<td>6</td>
</tr>
<tr>
<td>Hand Lay-up</td>
<td>Thermoforming & over molding</td>
<td>1</td>
</tr>
<tr>
<td>Curing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applying Adhesive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-molding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One Step Hybrid Part manufacturing
One step hybrid molding process
Thermoplastic composites in injection molding process

- Functional Integration
- One shot hybrid molding process (thermoforming + injection molding in one step)
- Rib structures can be injection molded to reinforce the part
- Relatively low investment cost
- Cycle times < 60 seconds
- Higher repeatability
- Higher geometric accuracy
- Suitable for complex parts
- Easy adaptation

During the manufacturing no chemical reaction occurs, a very reproducible process is obtained.
One step hybrid molding process
Thermoplastic composites in injection molding process

Advantages

- Functional Integration
- One shot hybrid molding process (thermoforming + injection molding in one step)
- Rib structures can be injection molded to reinforce the part
- Relatively low investment cost
- Cycle times < 60 seconds
- Higher repeatability
- Higher geometric accuracy
- Suitable for complex parts
- Easy adaptation

During the manufacturing no chemical reaction occurs, a very reproducible process is obtained.
One step hybrid molding process
Thermoplastic composites in injection molding process
One step hybrid molding process
Thermoplastic composites in compression molding process

Advantages
- Large parts with strong structural requirements
- High performing material in outer layer → stiffness/toughness
- One-step process allows many different material combinations for versatile part properties
One step hybrid molding process
Injection molding + In Mold Decoration (IMD)

Advantages

- Cost effective process
- Combination of three processing steps in one shot process
 - Thermoforming of Tepex®
 - Injection Molding
 - In-Mold-Decoration (IMD)
- Fully automated process
- Short cycle times: ~ 60 s
Equation for a successful mass production in automotive industry

Material
• availability for mass production

+ Process
• feasibility
• reliability
• cycle time

= Successful mass production
Mass production components with Tepex®

Automotive
- Carrier
- Seat pan/structure
- Door module
- Pedal / Pedal box
- Trunk well
- Frontend
- Rear Bumper
- Underbody protection

Non - Automotive
- Smartphone casing
- Shoe Soles
- Ski Boot

- Many projects in development and several mass productions targeted in 2019, ranging between 5000-300,000 parts/yr
Equation for a successful mass production in automotive industry

Material
- availability for mass production

Process
- feasibility
- reliability
- cycle time

Successful mass production

✅ + ✅ = ✅
Usage of composites is on the rise in automotive industry
Pal Swaminathan

LANXESS Corporation
Business Development Manager
Technical Marketing & Business Development TEPEX Automotive

BU High Performance Materials
111 RIDC Park West Drive
Pittsburgh, PA 15275-1112, USA

Mobile : +1 412 260 5435
Email : pal.swaminathan@lanxess.com
http://www.lanxess.com
The manner in which you use and the purpose to which you put and utilize our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specific analysis must at least include testing to determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by us. Unless we otherwise agree in writing, all products are sold strictly pursuant to the terms of our standard conditions of sale. All information and technical assistance is given without warranty or guarantee and is subject to change without notice. It is expressly understood and agreed that you assume and hereby expressly release us from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance, and information. Any statement or recommendation not contained herein is unauthorized and shall not bind us. Nothing herein shall be construed as a recommendation to use any product in conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent.

This presentation contains certain forward-looking statements, including assumptions, opinions and views of the company or cited from third party sources. Various known and unknown risks, uncertainties and other factors could cause the actual results, financial position, development or performance of the company to differ materially from the estimations expressed or implied herein. The company does not guarantee that the assumptions underlying such forward looking statements are free from errors nor do they accept any responsibility for the future accuracy of the opinions expressed in this presentation or the actual occurrence of the forecasted developments.

No representation or warranty (express or implied) is made as to, and no reliance should be placed on, any information, including projections, estimates, targets and opinions, contained herein, and no liability whatsoever is accepted as to any errors, omissions or misstatements contained herein, and, accordingly, none of the company or any of its parent or subsidiary undertakings or any of such person’s officers, directors or employees accepts any liability whatsoever arising directly or indirectly from the use of this document.

Health and Safety Information: Appropriate literature has been assembled which provides information concerning the health and safety precautions that must be observed when handling the LANXESS products mentioned in this publication. For materials mentioned which are not LANXESS products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be followed. Before working with any of these products, you must read and become familiar with the available information on their hazards, proper use, and handling. This cannot be overemphasized. Information is available in several forms, e.g., material safety data sheets and product labels. Consult your LANXESS Corporation representative or contact the Product Safety and Regulatory Affairs Department at LANXESS.

Note: The information contained in this publication is current as of May, 2016. Please contact LANXESS Corporation to determine if this publication has been revised.
LANXESS
Energizing Chemistry