Automated Cutting & Stacking Cell for Dry Fiber Textile Reinforcements (GF/CF) in Automotive and Aerospace Applications

SPE ACCE 2019 – Novi, MI – September 04 - 06, 2019

Christian Fais – President – Schmidt&Heinzmann North America Inc

Dr. David Buecheler – Process Engineering – Schmidt&Heinzmann GmbH & Co. KG
technological approach
Cutting & Stacking Cell
Lightweight design with Fiber Reinforced Plastics (FRP)

- Necessity for lightweight design in the automobile industry
 - Reduction of CO2-emission until 2021
 - Trends: electric mobility, hybrid drives, etc.

- Lightweight strategy: Composite construction
 - High-strength steels, Aluminium, Magnesium alloys
 - Fiber reinforced plastics (CFRP, GFRP, ...)

- Premise: Availability of automated manufacturing processes
 - Conflict area: weight reduction ↔ arising costs

Source: VW AG

Big potential for weight reduction in transport industry

© Schmidt & Heinzmann GmbH & Co. KG
Approach

Cutting
- Textiles
- Non Wovens
- Pre-Consolidated Layups
- Prepregs
- SMC

Stacking
- Taylored Fiber orientation
- Local Patches

Prefoming
- Binder activation
- Active wrinkle prevention

Resin Transfer Molding

Wet Compression Molding
Objective in Stacking

- The target is to cut and stack several layers of various materials quickly but precisely.
- The result is a multilayer and multiaxial stack.
Cutting Unit

- active blade wear measurement
- material position sensing
- material flow count
- unwinding slip compensation
- exchangeable cutting heads
- adaptive nesting algorhythm
- active belt guiding control
- automatic table calibration
- continuous material traceability
- material flow count
- active blade wear measurement
- material position sensing
- material flow count
- unwinding slip compensation
- exchangeable cutting heads
- adaptive nesting algorhythm
- active belt guiding control
- automatic table calibration
- continuous material traceability
Exchangeable Cutting Heads

Quick Exchange System

- Ultra Sonic vibrating blade
- undriven wheel blade
- driven rotary polygon blade
- robot calibration pin
- table calibration
Material Position Sensing

Sensors allow for fast and precise measurement relative to the cutter table of:

- materials position \((x, y)\)
- material angle \((\varphi)\)

![Diagram of sensor, cutter table, and material with coordinates \([x, y, \varphi]\)](image)

Bar chart showing accuracy in mm for different materials:

- GF woven
- CF +/-45
- CF 0/90
Stacking Unit

Flexible Gripper System

- Needle gripper
- Vacuum grippers
- Material detection
- Online size adjustment
Fixation of Stacks

- Automated fixation of the stacks by local Ultrasonic welding spots allow for handling operations and transport.
- Automated labeling of the stacks guarantees traceability of the parts.

US welding spot
Label on CF-parts
Welding and Labeling Table
Adaptive Nesting Algorithm

Material definition
material-related definition of cutting parameters

Stacking definition
Logical and easy data input to define each stack

Nesting
Optimized Nesting for perfect material usage of each cutter

Production process improvement
Automatic optimization of overall process including all cutters and robots
Adaptive Nesting Algorhythm

Automatic setting of parameters by the algorhythm for:

- cutters
- robots
- gripper
Layout of an Existing Aerospace Stacking Center

- 6 Cutting Units
- 1 Stacking Robot
- 1 Highly flexible Gripper
- 1 Welding and Labeling Table

Produced by Schmidt & Heinzmann
Central control unit manages all cutters directly for optimized process and includes nesting of each cutter.
Case Study: ROI based on Labor cost

<table>
<thead>
<tr>
<th>Production specification</th>
<th>Manuell</th>
<th>Automatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amortization Period</td>
<td>a 6</td>
<td>6</td>
</tr>
<tr>
<td>Investment</td>
<td>US$ 600,000</td>
<td>1,400,000</td>
</tr>
<tr>
<td>Amount on shifts</td>
<td>- 3</td>
<td>3</td>
</tr>
<tr>
<td>Amount on hours per day</td>
<td>h/d 8</td>
<td>8</td>
</tr>
<tr>
<td>Hourly wages</td>
<td>US$/h 18</td>
<td>25</td>
</tr>
<tr>
<td>Number of cutting tables</td>
<td>- 6</td>
<td>6</td>
</tr>
<tr>
<td>Number of workers per table</td>
<td>- 1.5</td>
<td>0.33</td>
</tr>
<tr>
<td>Number of stacking/labelling</td>
<td>- 1</td>
<td>1</td>
</tr>
<tr>
<td>Number workers per table</td>
<td>- 3</td>
<td>1</td>
</tr>
<tr>
<td>Wages per day</td>
<td>US$ 5,184</td>
<td>1,788</td>
</tr>
<tr>
<td>Working days per year</td>
<td>- 235</td>
<td>235</td>
</tr>
<tr>
<td>Working days per month</td>
<td>- 19,58</td>
<td>19,58</td>
</tr>
<tr>
<td>Wages per year</td>
<td>US$ 101,520</td>
<td>35,015</td>
</tr>
</tbody>
</table>

ROI after 15 month

![Graph showing ROI](image)
Variety of Materials can be processed

- GF Fabric Rolls
- CF Fabric Rolls
- Foam
- Prepregs
- Honeycomb
- Metal Mash Sheets
Potential Application in Automotive Parts

- Roof Cover
- Hoods
- Underbody parts
Process Simulation

Features:
- Early stage cycle time calculation in the conceptional phase
- Parametric models helps to generate quick 3D Layout, which will be close to the final setup later
- Models can be modified in size and function very easy during the project phase

Advantages:
- Reachability of the robots
- Identification of the bottle neck process
- Complete visual process available
Virtual Start-up & Commissioning

Features:
- Virtual start-up & commissioning of the line
- PLC program operates the simulation model on the PC
- Virtual simulation can operate all actors/axes in order to check the correct function → virtual I/O check

Advantages:
- Debugging of the program before the line is installed
- Simultaneous engineering possible
- Complex processes can checked easily on misfunctions
Virtual Setup of the plant / line

Features:
- Virtual setup of the line
- Walking through the complete line in virtual reality
- Virtual plant after a cloud measurement

Advantages:
- Real dimension of the line in virtual reality
- Organizing the plant/line setup with a pick and place tool
- Reduce the pinch points
Summary of Advantages

<table>
<thead>
<tr>
<th>Machine Features</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each cutter only uses 1 material, no change!</td>
<td>Continuous production, stable and high availability</td>
</tr>
<tr>
<td>Universal gripper system with advanced needle/vacuum modules</td>
<td>Fast product change, during process needle modules on/off following different shapes</td>
</tr>
<tr>
<td>Sensors for:</td>
<td>Stabilized production process and self regulation for best quality</td>
</tr>
<tr>
<td>– Material edge detection</td>
<td></td>
</tr>
<tr>
<td>– n.io sign detection</td>
<td></td>
</tr>
<tr>
<td>– Material feeding supervision</td>
<td></td>
</tr>
<tr>
<td>– ...</td>
<td></td>
</tr>
<tr>
<td>One process one machine!</td>
<td>Standard system consisting of cutter, robots, gripper and software</td>
</tr>
<tr>
<td>Schmidt & Heinzmann produces cutter, robotics, gripper and software</td>
<td></td>
</tr>
</tbody>
</table>
Thank you for your kind attention