Additive Manufacturing to Automotive Manufacturing: The Challenges of Volume Production

Ellen C. Lee, Additive Manufacturing Technical Leader, Ford Motor Company
ROADMAP

- **Why AM?** Efficiency, agility, performance
- **History of AM at Ford:** Over 30 years of use and exploration
- **Use cases today:** Prototyping, Manufacturing, Production
- **Case study:** Validation of production AM applications
 - Materials
 - Function
 - Manufacturing
- **Automotive industry requirements**
- **Bridging the Gaps**
WHY ADDITIVE DESIGN AND MANUFACTURING?

Business Efficiencies

- Design, Engineering & Validation
- Manufacturing Efficiencies
- Distributed Sourcing
- New Market Share / Revenue / Performance

Customer Attributes

- prototyping
- MRO inventory

Can AM Change the Automotive Manufacturing Landscape?
HISTORY OF ADDITIVE MANUFACTURING AT FORD

1988
Ford purchased SLA machine serial #3

AM Training and Development Center opens

Local centers develop

Sand printing

Manufacturing Aids

Prototypes and Visual Aids

Functional Parts

Metal printing

30+ YEAR JOURNEY

2020

Early access evaluations for emerging technologies
ADDITIVE MANUFACTURING AT FORD TODAY

• Advanced Manufacturing
 • Co-location of research, manufacturing, product development
 • Industry 4.0 and the digital factory

• Research
 • Materials development
 • Process development
 • Validation

• Product Development
 • Design for AM
 • Implementation
TODAY: MANUFACTURING FLOOR

Weight Reduction

90%

80+ kg
10 kg
1.9 kg
TODAY: PERSONALIZATION AND CUSTOMIZATION
TODAY: NICHE MARKETS

- F-150 Raptor Auxiliary Plug
- Special requirement for **niche market** — China
- 14 design **iterations** in 19 days
- **Customized** aesthetic with logo and texture
- Appearance **requirements** met without secondary coating
TODAY: SPARE PARTS

- Focus HVAC lever arm service parts
- Eliminated inventory and warehouse requirements
- Reduced lead time by 50%
- Reduced minimum order quantities
TODAY: SERIES PRODUCTION
CASE STUDY: SERIES PRODUCTION

- Mustang GT500 Electric Parking Brake Bracket
- Convert from metal to plastic
 >60% weight reduction
- Cost savings compared to tooled part
- Reduced complexity
 RH/LH to mono design
- Quick iterations/validation to improve design and performance
CASE STUDY: MATERIAL VALIDATION

- **Interior Weathering:**
 - Short-term heat exposure: tensile, impact, appearance
 - Long-term heat exposure
 - UV stability
- **Fogging:** SAEJ1756
- **Odor:** Ford standard
- **Flammability:** ISO 3795
- **Fluid & Chemical Resistance:** USCAR2
- **Retains Properties After:**
 - Heat aging @ 125C
 - Temp/humidity cycling
 - Thermal shock (-40°C to 125°C)
CASE STUDY: FUNCTIONAL VALIDATION

- Component-level testing:
 - Benchtop vibrational test
- Vehicle-level testing:
 - Track car testing
- Assembly-level testing:
 - Ergonomic testing
 - Torque testing
- Quickly modified designs to address opportunities to improve

AM Parts Require Same DV Testing as Conventional
CASE STUDY: MANUFACTURING VALIDATION

- Designed for AM and optimized function
- Ford validated **minimal variation** from print to print
- Created **DFMEA** for each part based on engineering requirements
- Created new **PFMEA**
- Followed **standard automotive PPAP** process

Generalized AM Process That Meets Ford Quality Standards
BRIDGING THE GAPS FOR TOMORROW

- Speed / cycle time
 - Hours/minutes versus minutes/seconds per part
 - Limited build envelopes
- Materials
 - Lack of automotive grade materials
 - Locked or closed systems
 - Cost
- Design
 - CAE tools for simulation and design
 - Mindset shift in design for AM guidelines
BRIDGING THE GAPS FOR TOMORROW

• Security throughout digital thread and cloud based software
 • Protecting ideas, design, counterfeit parts
• Data and computing power
 • Volumes of data, process control, data analytics
 • Data formats / file types and compatibility
• Education and training
 • Develop the pipeline
 • Engineering workforce
 • Manufacturing workforce
<table>
<thead>
<tr>
<th>New Sources of Value</th>
<th>New Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service parts / low-volume production</td>
<td>Emerging AM technologies</td>
</tr>
<tr>
<td>Series production</td>
<td>Automotive grade materials</td>
</tr>
<tr>
<td>Mass customization</td>
<td>Software: design and simulation tools</td>
</tr>
<tr>
<td>Distributed manufacturing</td>
<td>End-to-end automation</td>
</tr>
</tbody>
</table>

BRIDGING THE GAPS FOR TOMORROW
ACKNOWLEDGMENTS

- Research & Advanced Engineering
- Materials Engineering
- Product Development
- Ford Performance

- FCSD (Ford Customer Service Division)
- Advanced Manufacturing
- Supplier Technical Assistance
Questions?

Ellen C. Lee
elee9@ford.com